常用有源功率因數(shù)校正電路分為連續(xù)電流模式控制型與非連續(xù)電流模式控制型兩類。其中,連續(xù)電流模式控制型主要有升壓型(BooST)、降壓型(Buck)、升降壓型(Buck-Boost)之分;非連續(xù)電流模式控制型有正激型(Forward)、反激型(Fly back)之分,下面對這幾種電路的工作原理分別加以介紹。
1.升壓型PFC電路
升壓型PFC主電路如圖1所示,其工作過程如下:當開關管Q導通時,電流IL流過電感線圈L,在電感線圈未飽和前,電流線性增加,電能以磁能的形式儲存在電感線圈中,此時,電容C放電為負載提供能量;當Q截止時,L兩端產(chǎn)生自感電動勢VL,以保持電流方向不變。這樣,VL與電源VIN串聯(lián)向電容和負載供電。
圖1 升壓型PFC主電路
這種電路的優(yōu)點是:(1)輸入電流完全連續(xù),并且在整個輸人電壓的正弦周期內(nèi)都可以調(diào)制,因此可獲得很高的功率因數(shù);(2)電感電流即為輸入電流,容易調(diào)節(jié);(3)開關管柵極驅(qū)動信號地與輸出共地,驅(qū)動簡單;(4)輸入電流連續(xù),開關管的電流峰值較小,對輸入電壓變化適應性強,適用于電網(wǎng)電壓變化特別大的場合。主要缺點是輸出電壓比較高,且不能利用開關管實現(xiàn)輸出短路保護。
2.降壓型PFC電路
降壓型PFC電路如圖2所示,其工作過程如下:當開關管Q導通時,電流IL流過電感線圈,在電感線圈未飽和前,電流IL線性增加;當開關管Q關斷時,L兩端產(chǎn)生自感電動勢,向電容和負載供電。由于變換器輸出電壓小于電源電壓,故稱為降壓變換器。
圖2 降壓型PFC主電路
?。?)這種電路的主要優(yōu)點是:開關管所受的最大電壓為輸人電壓的最大值,因此開關管的電壓應力較?。划敽蠹壎搪窌r,可以利用開關管實現(xiàn)輸出短路保護。
?。?)該電路的主要缺點是:由于只有在輸人電壓高于輸出電壓時,該電路才能工作,所以在每個正弦周期中,該電路有一段因輸人電壓低而不能正常工作,輸出電壓較低,在相同功率等級時,后級DC/DC變換器電流應力較大;開關管門極驅(qū)動信號地與輸出地不同,驅(qū)動較復雜,加之輸人電流斷續(xù),功率因數(shù)不可能提高很多,因此很少被采用。
3.升降壓型PFC電路
升降壓型PFC電路如圖3所示,其工作過程如下:當開關管Q導通時,電流IIN流過電感線圈,L儲能,此時電容C放電為負載提供能量;當Q斷開時,IL有減小趨勢,L中產(chǎn)生的自感電動勢使二極管D正偏導通,L釋放其儲存的能量,向電容C和負載供電。
圖3升壓型PFC主電路
(1)該電路的優(yōu)點是既可對輸人電壓升壓又可以降壓,因此在整個輸入正弦周期都可以連續(xù)工作;該電路輸出電壓選擇范圍較大,可根據(jù)一級的不同要求設計;利用開關管可實現(xiàn)輸出短路保護。
?。?)該電路的主要缺點有:開關管所受的電壓為輸入電壓與輸出電壓之和,因此開關管的電壓應力較大;由于在每個開關周期中,只有在開關管導通時才有輸入電流,因此峰值電流較大;開關管門極驅(qū)動信號地與輸出地不同,驅(qū)動比較復雜;輸出電壓極性與輸入電壓極性相反,后級逆變電路較難設計,因此也采用得較少。
提示:常用連續(xù)電流模式類功率因數(shù)校正芯片有TDA16888(PFC+PWM)、1PCS01(PFC)、L4981、FA4800(PFC+PWM)、UC3854、UCC3817、UCC3818等。
4.正激型PFC電路
正激型PFC電路如圖4所示,當開關管Q導通時,二級管D1正偏導通,電網(wǎng)向負載提供能量,輸出電感L儲能。當Q關斷時,L中儲存的能量通過續(xù)流二極管D2向負載釋放。
這種電路的優(yōu)點是功率級電路簡單,缺點是要增加一個磁復位回路來釋放正激期間電感中的儲能。
圖4 正激型PFC主電路
5.反激型PFC電路
反激型PFC電路如圖5所示,當開關管Q導通時,輸入電壓加到高頻變壓器B1的原邊繞組上,由于B1副邊整流二極管D1反接,副邊繞組中沒有電流流過,此時,電容C放電向負載提供能量。當開關管Q關斷時,繞組上的電壓極性反向,二極管D1正偏導通,儲存在變壓器中的能量通過二極管D1向負載釋放。
這種電路的優(yōu)點是功率級電路簡單,且具有過載保護功能。
圖5 反激型PFC主電路