《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > 運算放大器容性負載驅動分析
運算放大器容性負載驅動分析
摘要: 為什么我要考慮驅動容性負載問題?通常這是無法選擇的。在大多數情況下,負載電容并非人為地所加電容。它常常是人們不希望的一種客觀存在。
Abstract:
Key words :

問:為什么我要考慮驅動容性負載問題?

答:通常這是無法選擇的。在大多數情況下,負載電容并非人為地所加電容。它常常是人們不希望的一種客觀存在,例如一段同軸電纜所表現出的電容效應。但是在有些情況下,要求對運算放大器的輸出端的直流電壓進行去耦。例如,當運放被用作基準電壓的倒相或驅動一個動態(tài)負載時。在這種情況下,你也許在運放的輸出端直接連接旁路電容。不論哪種
情況,容性負載都要對運放的性能有影響。

問:容性負載如何影響運放的性能?
答:為簡單起見,可將放大器看成一個振蕩器。每個運放都有一個內部輸出電阻RO,當它與容性負載相接時,在運放傳遞函數上產生一個附加的極點。正如圖1(b)波特圖幅頻特性曲線表示,附加極點的幅頻特性斜率比主極點20dB/十倍頻程更徒。從相頻特性曲線圖1(c)中可以看出,每個附加極點的相移都增加-90°。a1801.gif (94868 字節(jié))

圖1 容性負載電路及其波特圖

我們可用圖1(b)或圖1(c)來判斷電路的穩(wěn)定性。從圖1(b)中可以看出,當開環(huán)增益和反饋衰減之和大于1時,電路會不穩(wěn)定。同樣,在圖1(c)中,如果某一工作頻率低于閉環(huán)帶寬,在這個頻率下環(huán)路相移超過-180°時,運放會出現振蕩。電壓反饋型運算放大器(VFA)的閉環(huán)帶寬等于運放增益帶寬積(GBP,或單位增益頻率)除以電路閉環(huán)增益(A CL )。運算放大器電路的相位裕度定義為使電路不穩(wěn)定所要求的閉環(huán)帶寬處對應的附加相移(即環(huán)路相移十相位裕度=-180°)。當相位裕度為0時,環(huán)路相移為-180°,此運放電路不穩(wěn)定。通常,當相位裕度小于45°時,會出現問題,例如頻響“尖峰”,階躍響應中的過沖或“振鈴”。為了使相位裕度留有余地,容性負載產生的附加極點至少應比電路的閉環(huán)帶寬高10倍,如果不是這樣電路可能不穩(wěn)定。

問:那么我應該如何處理容性負載?
答:首先我們應該確定運放是否能穩(wěn)定地驅動自身負載。許多運放數據手冊都給出“容性負載驅動能力”這項指標。還有一些運放提供“小信號過沖與容性負載關系曲線”,從中你可以看到過沖與附加負載電容呈指數關系增加,當達到100%時,運放不穩(wěn)定。如果有可能,應該使運放過沖遠離100%。還應注意這條曲線對應指定增益。對于VFA,容性負載驅
動能力隨增益成比例增加。所以,如果在增益為1時,VFA可穩(wěn)定驅動100pF容性負載,那么在增益為10時,便能驅動1000pF容性負載。也有少數運放的產品說明中給出開環(huán)輸出電阻RO,從而可以計算出上述附加極點的頻率fP= 1/2πROCL 。如果附加極點fP大于上述電路帶寬10倍,則電路穩(wěn)定。如果運放的產品說明沒有提供容性負載驅動能力或開環(huán)輸出電阻的指標,也沒有給出過沖與容性負載關系曲線,那么要保證電路穩(wěn)定,你必須對容性負載采取必要的補償措施。要使標準運放驅動容負載工作穩(wěn)定有許多處理方法,下面介紹幾種。

(1)提高噪聲增益法
使低頻電路穩(wěn)定的有效方法,也是設計者常常忽略的方法,就是增加電路的閉環(huán)增益(即噪聲增益),而不改變信號增益,這樣可在開環(huán)增益與反饋衰減到0dB帶寬之積恒定條件下降低噪聲帶寬。具體電路如圖2所示。在圖2(a)中,在運放的兩個輸入端之間接電阻RD。此時電路的增益可由給定公式計算。因為是噪聲增益而不是信號增益支配穩(wěn)定性,所以a1802.gif (46369 字節(jié))

圖2 提高效大器噪聲增益電路
電路穩(wěn)定性的提高不影響信號增益。為保證電路穩(wěn)定,最簡單的方法是使噪聲帶寬至少應比容性負載極點頻率低10倍頻程。

a1803.gif (48441 字節(jié))

圖3 環(huán)路增益波特圖
這種方法的缺點是輸入端電壓噪聲和輸入失調電壓被放大產生附加的輸出電壓噪聲和輸出失調電壓增加。用一個電容CD與電阻RD串聯可以消除附加的直流失調電壓,但增加的電壓噪聲是器件固有的,不能消除。當選用CD時,其電容值應盡可能大。為保證噪聲極點至少低于“噪聲帶寬”10倍,CD最小應取10A NOISE /2πRDGBP。

(2)環(huán)路外補償法
這種方法是在運放的輸出端和負載電容之間串入一個電阻RX,如圖4所示。雖然RX加在反饋環(huán)路的外部,但它可將負載電容產生的附加零點頻率fZ作用到反饋網絡的傳遞函數,從而可以減小高頻環(huán)路相移。為了保證電路穩(wěn)定,RX的取值應該使附加零點頻率至少比運放電路閉環(huán)帶寬低10倍。電路加入RX使電路性能不會像方法1那樣增加輸出噪聲,但是從負載端看進去的輸出阻抗要增加。由于RX和RL構成分壓器,從而會使信號增益降低。如果RL已知并且適當地恒定,那么增益降低值可通提高運放電路的增益來補償。這種方法用于驅動傳輸線路非常有用。RL和RX值必須等于電纜的特征阻抗(通常為50Ω和75Ω),以免產生駐波。因此,先確定RX值,其余其它電阻值要使放大器的增益加倍,用來補償由電阻分壓作用降低的信號增益,從而解決問題。

(3)環(huán)路內補償法
如果RL值未知,或者是動態(tài)值,那么增益級的有

a1804.gif (163843 字節(jié))
圖4 環(huán)路外補償法
效輸出電阻必須很低。在這種情況下,在整個反饋環(huán)路內接一個電阻RX是很有用的,如圖5所示。在這個電路中,由于直流和低頻反饋都是來自負載電阻RL,所以從輸入端到負載的信號增益不受分壓器RX和RL的影響。

圖5 環(huán)路內補償法
RX=RORGRF
CF=RO+RXRF·CL
在這個電路中外接的電容CF是用來抵消CL產生的附加極點和零點。為了簡便起見,CF產生的零點頻率應該與CL產生的極點頻率相一致,CF產生的極點頻率應該與CL產生的零點頻率相一致。因此整個傳遞函數和相頻響應好像似沒有電容作用一樣。為了確保極點和零點作用相互抵消,圖5中的方程必須求解準確。還應注意方程成立的條件:RFRO,RGRO,RLRO。如果負載電阻很大,這些條件容易滿足。

當RO未知時,計算則很困難。在這種情況下,設計過程變成猜謎游戲。應該注意“SPICE”這個詞:運算放大器的SPICE模型是一種不能精確地表示運放開環(huán)輸出電阻RO的模型,所以這種模型不能完全取代傳統(tǒng)的補償網絡設計方法。還應當強調指出的是,為了采用這種方法,CL必須已知(且為常數)。在許多應用中,放大器驅動一個電路外部的負載,當負載改換時,CL也應該適當變化。只有當CL接入閉環(huán)系統(tǒng)時,使用上述電路才最適合。這種在基準電壓的緩沖器或倒相器中,驅動一個大的去耦電容。這里CL是固定值,可以精確地抵消極點和零點的作用。與前兩種方法相比,這種方法非常適合用于低直流輸出電阻和低噪聲的情況。而且像對基準電壓源進行去耦的那么大的容性負載(一般幾微法),用其它方法補償都是不切實際的。

上述三種補償方法都各有其優(yōu)點和缺點。為了對你的應用做出最好的選擇,應該對它們有足
夠的認識。這三種方法都適合用于“標準”用法,即單位增益穩(wěn)定,電壓反饋運算放大器(V
FA)。對于特殊應用的放大器,讀者應該采用其它方法。

問:我的運放有一個“補償”腳。當驅動容性負載時,為使電路保持穩(wěn)定,我能用它對運放進行補償嗎?

答:可以。這是對容性負載進行補償的最簡單的方法?,F在許多運放都帶有使單位增益穩(wěn)定的內部補償電路。但是許多運放只有在很高噪聲增益下才能一直保持固有的穩(wěn)定性。這類運放有一個與外部電容相連的引腳,用來減少主極點頻率。為了在低增益時工作穩(wěn)定,外接電容必須靠近這個引腳,以減小增益帶寬積。當驅動容性負載時,增加外接電容過補償)可以提高穩(wěn)定性,但是帶寬降低。

問:到現在為止,你只討論了VFA的容性負載驅動問題,是嗎?那么對于電流反饋運算放大器(CFA)的容性負載驅動問題應如何處理?上述討論的那些方法,我可以使用嗎?

答:當驅動容性負載時,對CFA的一些特性要特別注意,但容性負載對電路的影響是相同的。與運放輸出電阻相連的容性負載產生附加極點,從而增加相移并降低相位裕度,有可能產生尖峰、振鈴,甚至振蕩。但是,因為CFA不存在增益帶寬積這個概念(帶寬依賴于增益的程度很小),所以通過簡單增加噪聲增益的方法,對提高電路穩(wěn)定性沒有顯著作用。這樣便使第一種方法失效。另外,電容絕不應接入CFA反饋環(huán)路,這樣又使第三種方法失效。對驅動容性負載的CFA進行補償最合適的方法是方法2,在環(huán)路外串接一個電阻。

問:你上述介紹了一些很有用的方法,但是我還不能處理容性負載驅動問題。另外,我的印制線路板已經制好,并且不想報廢。請問是否有驅動容性負載自身很穩(wěn)定的運放?

答:有。ADI公司提供一些很有用的運放,它們既能驅動“無限制”容性負載,同時又能保持優(yōu)良的相位裕度,如表1所示。表1還給出了驅動容性負載可高達規(guī)定值的另一類運放。所謂驅動容性負載“無限制”并不是意味著驅動10μF容性負載像驅動阻性負載那樣具有相同的轉換速率。

ab1801.gif (158195 字節(jié))

此內容為AET網站原創(chuàng),未經授權禁止轉載。