《電子技術應用》
您所在的位置:首頁 > 電源技術 > 設計應用 > 新型無源無損軟開關Boost變換器的原理分析
新型無源無損軟開關Boost變換器的原理分析
摘要: 對于PWM變換器,無源軟開關通過降低有源開關的di/dt和dv/dt來實現(xiàn)零電流導通和/或零電壓關斷,以減少開關損耗。本文對其中的一種合成新型軟開關Boost變換器的工作原理及參數(shù)選擇進行了分析,給出理論波形和仿真波形,并對其進行分析。
Abstract:
Key words :

中心議題:

解決方案:

  • 元器件都是采用無源元器件
  • 有源和無源軟開關技術


1前言


開關電源目前存在五個挑戰(zhàn)性的問題,能否更加小型化就是其中之一。使開關電源小型化的重要途徑是提高開關頻率。高頻化能使變壓器和電感等磁性元件以及電容體積和重量大為減少,從而提高變換器的功率密度。但是提高開關頻率的同時也增加了開關損耗,并使電磁干擾更加嚴重。采用軟開關技術可以降低開關損耗,使開關電源可以在低損耗情況下實現(xiàn)高頻運行。其實現(xiàn)方法可分為有源和無源軟開關技術。有源軟開關技術在原有電路上附加有源器件(如開關),價格比較昂貴,工作時還要增加控制電路以對附加開關進行控制,電路復雜,可靠性比較差。相比之下,無源軟開關電路簡單,可靠性高,價格便宜。這些優(yōu)點使得無源軟開關近幾年倍受青睞。對于PWM變換器,無源軟開關通過降低有源開關的di/dt和dv/dt來實現(xiàn)零電流導通和/或零電壓關斷,以減少開關損耗。文獻[1]對無源軟開關技術進行了總結,并提出了無源無損軟開關PWM變換器合成方法。根據(jù)這種方法,可以合成多種性能良好的軟開關PWM變換器。本文對其中的一種合成新型軟開關Boost變換器的工作原理及參數(shù)選擇進行了分析,給出理論波形和仿真波形,并對其進行分析。

2工作原理

這種新型無源軟開關變換器在Boost基本拓撲基礎上附加了一個子電路,如圖1虛框中所示。

圖1新型無源無損軟開關Boost變換器


子電路包括一個電感Lr,兩個電容Cs、Cr,三個二極管D1、D2和D3。Lr提供主開關零電流開通條件,限制二極管D的反向恢復電流。電容Cs提供開關零電壓關斷條件。電容Cr為電感Lr能量恢復提供能量。這種變換器有七種運行模態(tài)。假設各種元器件為理想元器件,且Cs
(1)t
開關S處于關斷狀態(tài),此時vcs=VO,vcr=0,iLr=iin。簡化電路如圖2(a)所示,波形圖如圖3所示。

(2)t0~t1

從t0開始,開關S導通,電流iLr線性下降,簡化電路如圖2(b)所示。t=t1時,電流iLr減少到零,二極管D關斷,波形圖如圖3所示。這段時間為:t0-1=t1-t0=(1)

(3)t1~t2

從t1開始,Cs開始經D2,Cr、Lr和開關S放電,vcr從零上升,電流iLr從零反方向增加,簡化電路如圖2(c)所示,波形圖如圖3所示。在此過程中,電流iLr、電容電壓vcs和電容電壓vcr由下面公式決定。iLr=-sin(ωt)(2)vcr=〔1-cos(ωt)〕(3)vcs=VO+〔cos(ωt)-1〕(4)

t=t2時,Cs放電過程結束,vcs=0,波形圖如圖3。電容電壓vcs從最大值降到零的時間ts由式(5)決定。ts=arccos(5)

(4)t2~t3

從t2開始,由于vcs=0,D1導通,電感Lr和電容Cr發(fā)生諧振,電感電流iL流經D1和D2,向Cr充電。電容電壓vcr繼續(xù)上升,簡化電路如圖2(d)所示。t=t3時,vcr達到最大值VCrmax,電感電流iLr降到零,波形圖如圖3所示。這段時間為:

t2-3=t3-t2=Tr(6)式中:Tr=2π為諧振周期。

(5)t3~t4

從t3開始,由于iLr=0,D1和D2關斷,vcr保持在最大值VCrmax。變換器工作在PWM狀態(tài),且iL=is,簡化電路如圖2(e)所示,波形圖如圖3所示。t=t4時,開關S關斷。

(6)t4~t5

從t4開始,由于開關S關斷,電源Vi一路經L,D1向Cs充電,vcs從零開始上升;另一路則經L,Lr,Cr,D3向負載供電,同時電容Cr放電,vcr下降,iLr上升,簡化電路如圖2(f)所示。t=t5時,vcs達到VO。波形圖如圖3所示。



(7)t5~t6

從t5開始,vcs被鉗在VO,即VCsmax=VO;電源繼續(xù)經L,Lr,Cr,D3向負載供電,電容Cr繼續(xù)放電。t=t6時,電容電壓vcr降到零,同時電感電流iLr上升到Iin,iLr=Iin,簡化電路如圖2(g)所示,波形圖如圖3所示。

圖2新型無源無損軟開關Boost變換器的工作模態(tài)
 
圖3 Boost變換器各電流和電壓波形圖


(8)t6~t7

從t6開始,變換器重新工作在PWM狀態(tài),簡化電路如圖2(a)所示。t=t7時,開關S導通,開始下一個周期的工作。

由上面各工作模態(tài)分析可知:當開關S導通時,由于iLr=Iin,電感電流不能突變,使得電流is從零開始上升;當開關S關斷時,由于vcs=0,電容電壓不能突變,把開關電壓vds鉗在零,當電源Vi對Cs充電時,開關電壓vds才開始上升,從而實現(xiàn)零電流開通和零電壓關斷,并且最大開關電壓Vdsmax被鉗在VO。也就是說,這種新型無源無損軟開關Boost交換器在沒有增加開關應力的基礎上實現(xiàn)了零電流開通和零電壓關斷。

3參數(shù)計算

附加子電路只給開關提供軟開關條件,因而其參數(shù)的設置條件是:保證附加子電路提供軟開關條件,但不影響原電路的工作。一般情況下,Cs的值小于10nF,而Cr的值是Cs的20倍以上。t1-2(也即ts,為Cs放電,vcs從VO降到零的時間)不宜太小,因為這段時間太小,開關電流上升的時間就短,di/dt將變大,使得EMI增大,也即電感Lr不宜太小。但是Lr也不宜過大,過大將使子電路的工作時間較長,增加了工作損耗,影響原電路的工作,并且也影響了電路零電流開通的條件。

4仿真結果


利用以上的電路原理,對一個帶有這種附加電路的Boost變換器進行仿真。參數(shù)如下:Cr=400nF,Cs=10nF,L=200μH,C=40μF,R=50Ω,Vi=15V。在其他參數(shù)確定的情況下,可用Pspice中的參數(shù)掃描分析功能確定Lr的值。分析結果取Lr=50μH。仿真結果如圖4所示。

(a)開關S電壓和電流的波形
 
(b)附加電感Lr電流與開關控制信號的波形
 
(c)附加電容Cr電壓與開關控制信號的波形
圖4 Boost變換器各電流及電壓仿真波形


由圖4可知,當開關導通時,開關電壓V(M1:d)(Vds)下降,由于電感Lr的作用,電流不能突變,使得開關電流is在開關電壓V(M1:d)(Vds)降到零后,才從零開始上升,實現(xiàn)了開關的零電流導通。當開關關斷時,由于電容Cs的鉗壓作用,開關電壓從低電壓上升,基本實現(xiàn)零電壓關斷。而電感電流iLr和電壓vcr波形與理論分析的是一致的。

5結論

而本文分析的電路附加電感Lr插在二極管D支路,電感在開關關斷時充電。由以上分析可知,兩個附加電路功能一樣,但在各個工作模態(tài)中對電路的作用卻不一樣。這種變換器外加元器件都是無源元器件,價格比較便宜,可靠性較強,損耗低,只需用一個控制電路對主開關進行控制,并且在不增加開關應力的情況下實現(xiàn)零電流開通和零電壓關斷。

此內容為AET網站原創(chuàng),未經授權禁止轉載。