摘 要: 在Matlab 2008a/Simulink環(huán)境下,建立了三相(6/4極)的開關(guān)磁阻電機的速度控制系統(tǒng)動態(tài)仿真模型,對基于模糊自整定PID的開關(guān)磁阻電機速度控制系統(tǒng)進行了仿真研究,并與基于常規(guī)PID的開關(guān)磁阻電機速度控制系統(tǒng)仿真結(jié)果進行了對比。對比結(jié)果表明,采用模糊自整定PID控制算法,系統(tǒng)速度控制性能明顯優(yōu)于常規(guī)PID控制算法。
關(guān)鍵詞: 開關(guān)磁阻電機;模糊自整定PID控制;速度控制系統(tǒng)
開關(guān)磁阻電機具有結(jié)構(gòu)簡單、可靠性高、成本低、功率電路簡單可靠等優(yōu)點。但是由于開關(guān)磁阻電機的雙凸極結(jié)構(gòu)和開關(guān)形式的供電電源使其成為強耦合的非線性系統(tǒng),采用常規(guī)的PID控制算法已經(jīng)不能達到理想的控制效果。而模糊控制是一種典型的智能控制方法,在速度控制應用方面,對于參數(shù)的非線性變化有著較強的適應性。本系統(tǒng)為了提高開關(guān)磁阻電機的速度控制性能,引用了模糊算法和PID算法相結(jié)合的控制算法,即模糊自整定PID控制算法,充分利用兩者的優(yōu)點,從而使SRM速度控制系統(tǒng)獲得很好的控制效果。
1 開關(guān)磁阻電機系統(tǒng)的數(shù)學模型
常用的求解SRM的基本方程的方法有三種:線性化法、準線性化法和非線性化法。本文采用線性化法對SRM各變量的解析式求解,其電路方程、磁鏈方程、機械方程、轉(zhuǎn)子角速度、機電聯(lián)系方程如式(1)~式(5)所示[1]:
由于開關(guān)磁阻電機運行時內(nèi)部磁路高度非線性,電磁關(guān)系非常復雜,為了探究電機內(nèi)部基本的電磁關(guān)系,需要對磁阻電機進行線性分析。在線性模型中,為了簡化分析作出了以下假設(shè)[1]:不計磁路的飽和影響,繞組的電感和電流的大小無關(guān);忽略磁路的非線性和磁通邊緣效應;忽略鐵芯的磁滯效應和渦流效應,忽略所有功率損耗;半導體開關(guān)器件為理想開關(guān),開關(guān)動作是瞬間完成的;電機轉(zhuǎn)速恒定;電源電壓恒定。
2 開關(guān)磁阻電機控制系統(tǒng)建模
常規(guī)的PID控制器的算法簡單、可靠性高、穩(wěn)定性好,而且設(shè)計比較容易、適應面寬廣,在過程控制中應用非常廣泛。但是,在工業(yè)過程中,被控對象復雜多變且干擾因素復雜,要獲得滿意的控制效果,就需要不斷地對PID參數(shù)進行實時調(diào)整。而這些參數(shù)有時變化無常,往往沒有確定不變的數(shù)學模型和規(guī)律可循,而使用模糊控制器來調(diào)節(jié)PID參數(shù)則是可行且非常實用的選擇。模糊控制器可以充分利用操作人員進行實時非線性調(diào)節(jié)的成功實踐操作經(jīng)驗,同時充分發(fā)揮PID控制器的優(yōu)良控制作用,最終使整個系統(tǒng)達到最佳控制效果。文本引用了這種將模糊控制和PID控制結(jié)合的控制算法即模糊自整定PID控制。
2.2 量化因子和比例因子的確定
在模糊自整定控制器中,量化因子ke、kec和比例因子kp、ki、kd對模糊控制系統(tǒng)的動態(tài)性能有較大的影響。量化因子和比例因子由下列公式確定[4]:
量化因子=模糊論域值/物理論域范圍值
比例因子=物理論域范圍值/模糊論域值
本文中,量化因子ke、kec和比例因子kp、ki、kd的模糊論域為[-6,6],模糊論域值為12,而ke、kec、kp、ki、kd的物理論域范圍值則不同。在實驗中經(jīng)過反復的觀察和摸索,并進行多次調(diào)整,本文所設(shè)計的模糊自整定PID控制器的量化因子為ke=0.006,kec=0.001;比例因子為kp=0.033,ki=0.024,kd=0.166。且將初始PID參數(shù)設(shè)為:kp=0.5,ki=3.5,kd=0.005。
2.3 基于模糊自整定PID控制的SRM仿真
本文構(gòu)造了離散的SRM速度控制系統(tǒng)仿真模型,為保證系統(tǒng)的仿真運行速度又不會失真,將采樣時間Ts設(shè)置為2.5×10-5s。
(1)基于模糊自整定PID控制的SRM速度控制系統(tǒng)仿真模型
SRM速度系統(tǒng)采用雙閉環(huán)控制,其中轉(zhuǎn)速外環(huán)采用模糊自整定PID控制算法,電流內(nèi)環(huán)采用的是常規(guī)的PID控制算法。經(jīng)過雙閉環(huán)的模糊控制器和經(jīng)典PID控制器輸出的值與由位置傳感器檢測的三相位置信號的脈寬進行比較,從而控制系統(tǒng)的功率變換電路的IGBT主開關(guān)的通斷,達到控制SRM的目的?;谀:哉≒ID控制的開關(guān)磁阻電機速度控制系統(tǒng)仿真模型如圖2所示。
(2)模糊自整定PID(fuzzy self-tuning PID)模塊
按照模糊自整定PID控制器的設(shè)計原理以及步驟,搭建出模糊自整定PID控制算法的速度控制器仿真模型,如圖3所示。
(3)位置檢測模塊
速度控制系統(tǒng)位置檢測模塊如圖4所示,通過檢測開關(guān)磁阻電機的角速度?棕(rad/s),根據(jù)6/4極磁阻電機定子、轉(zhuǎn)子的特點,假設(shè)初始位置有一相定子凸極中心線與轉(zhuǎn)子凹槽中心線重合,即該相相電感值最小,則轉(zhuǎn)子每轉(zhuǎn)過30°,便會使得另一相的定子凸極中心線與轉(zhuǎn)子凹槽中心線重合,達到最小相電感;轉(zhuǎn)子每轉(zhuǎn)過90°,則回到初始狀態(tài)。將?棕乘以系數(shù)180/π得出SRM轉(zhuǎn)子每秒轉(zhuǎn)過的角度,通過3個初始狀態(tài)分別為:0,-30, -60的離散積分函數(shù)則可得出三相各自對應的角度,然后將該位置信號轉(zhuǎn)換成脈沖信號輸出。圖中α和β分別為開通角和關(guān)斷角,分別設(shè)定為45°和78°。
(4)系統(tǒng)的仿真參數(shù)設(shè)置
該系統(tǒng)開關(guān)磁阻電機的參數(shù)為:類型6/4極;初始速度和位置[0 0];額定功率60;額定轉(zhuǎn)動慣量0.05 kg.m2。
3 仿真結(jié)果分析
將模型依照圖2搭建好后,把階躍信號幅值改為1 000,即給定速度為1 000 r/min。圖5所示為模糊自整定PID控制與常規(guī)PID控制的轉(zhuǎn)速仿真波形的對比,可以看出,基于模糊自整定PID控制的SRM速度控制系統(tǒng)的響應速度比基于常規(guī)PID控制的SRM速度控制系統(tǒng)的響應速度要快,且前者的超調(diào)和振蕩要比后者要明顯減少。
圖6所示為在突加負載時,模糊自整定PID控制與常規(guī)PID控制各自的轉(zhuǎn)速曲線圖。相對于常規(guī)PID控制,模糊自整定PID控制在突加負載時轉(zhuǎn)速下降較小,而且恢復得也比較快。所以,基于模糊自整定PID的SRM速度控制系統(tǒng)抗擾動的能力較強,在突加負載后,轉(zhuǎn)速能夠得到很好的控制,體現(xiàn)出模糊自整定PID控制的優(yōu)點。
通過仿真圖可以發(fā)現(xiàn),基于模糊自整定PID控制的開關(guān)磁阻電機速度控制系統(tǒng)的響應速度快、超調(diào)量小、調(diào)節(jié)時間短、抗干擾能力強,系統(tǒng)的動態(tài)性能得到全面改善。
本文研究了一種模糊自整定PID控制策略,并將模糊自整定PID控制器引入到開關(guān)磁阻電機速度控制系統(tǒng)中進行了建模和仿真,并與基于常規(guī)PID控制的SRM速度控制系統(tǒng)進行了對比。仿真結(jié)果表明,采用模糊自整定PID控制可以使開關(guān)磁阻電機速度控制系統(tǒng)獲得良好的動態(tài)和靜態(tài)性能,模糊自整定PID控制對于開關(guān)磁阻電機速度控制系統(tǒng)是一種很好的控制方法。
參考文獻
[1] 吳紅星.開關(guān)磁阻電機系統(tǒng)理論與控制技術(shù)[M].北京:中國電力出版社,2010.
[2] 石辛民,赫整清.模糊控制及其MATLAB仿真[M].北京:清華大學出版社;北京交通大學出版社,2008.
[3] 李楠,孟慶春,付曉峰.基于參數(shù)自整定模糊PID控制策略的電機模型仿真研究[J].機電工程技術(shù),2004(9):55-57.
[4] 叢望,米芳芳.基于模糊PID控制的開關(guān)磁阻電機調(diào)速制系統(tǒng)的建模與仿真[J].航電技術(shù),2008(1):39-42.