一般基于自偏置的基準電路,由于MOS管工作在飽和區(qū),其工作電流一般在微安級,雖然可以適用于大部分消費類電子芯片的應用,但對于一些特殊應用,如充電電池保護芯片,則無法達到其設計要求。于是降低基準電路的電流則成為芯片低功耗設計的關鍵。為了減小電路的靜態(tài)電流,這里的基準與偏置電路采用增強管與耗盡管相結(jié)合的方式。對于增強型MOS管,閾值電壓隨溫度的升高而下降;對于耗盡型MOS管,閾值電壓為負,其閾值電壓的溫度系數(shù)與增強型相反。利用增強型MOS管閾值電壓的負溫度系數(shù)和耗盡管閾值電壓的正溫度系數(shù)產(chǎn)生一個精度很高的基準電壓。
1 基準電壓源的結(jié)構(gòu)與工作原理
圖1為基準電壓源的等效結(jié)構(gòu)圖。其中,M4為耗盡管,M6為增強管。從圖1中可以看出,M4柵源極相連后,流過該管的電流為:
由于NMOS耗盡管的閾值電壓為負值,并且具有負溫度系數(shù),因此由式(1)可知,耗盡管電流隨溫度上升而變大。該電流就是通過增強管M6的電流。從圖1可以看出基準電壓為:
由于增強管M6的閾值電壓具有負溫度系數(shù),而通過該管的電流具有正溫度系數(shù),因此通過合理設置M4,M6的寬長比就能在室溫下獲得比較恒定的基準電壓。
這種結(jié)構(gòu)的基準電壓源具有以下優(yōu)點:
(1)可以產(chǎn)生較低基準電壓。與一般的1.2 V基準電壓相比,圖1所示的電路結(jié)構(gòu)可以產(chǎn)生更低的基準電壓。特別是當所選擇工藝的NMOS管閾值較小,并且耗盡管的寬長比較小時,基準電壓只有零點幾伏,在低壓供電的電源芯片中,具有較大的優(yōu)勢。
(2)電路具有極小的靜態(tài)電流。M4管柵源極相連充當恒流源,由于該管長度設置得較大,因而對應的等效電阻很大,流過的靜態(tài)電流很小,一般只有幾百納安。
(3)無需額外的啟動電路。耗盡型晶體管為常通型晶體管,只有當柵極所加電壓超過其閾值電壓時,管子才會關斷。而M4管的柵極電壓始終為0,并且M6管屬于二極管連接,因此系統(tǒng)上電后,必然有從電源到地的直流通路,所以不需要額外的啟動電路幫助系統(tǒng)擺脫靜態(tài)電流為0的簡并狀態(tài)。
2 改進電路結(jié)構(gòu)及原理
圖1所示基準電壓源具有靜態(tài)電流小,無需額外啟動電路等優(yōu)點,但其電源抑制比特性不是很好。為了獲得較好的電源抑制特性,可以將圖1的基準單元進行級聯(lián)排列,如圖2所示。
M1,M2,M4為耗盡管,M5,M6為增強管。其中,M1和M5為第一級電路,M2,M4,M6為二級電路,一級與二級電路間的關聯(lián)不大。通過設計M1和M5管的寬長比可以獲得一個比基準更小的偏置電壓。同時將該輸出接到基準電源第二級電路中M2管的柵極,減弱了該點隨電源電壓的變化,從而有效地提高了基準輸出端的電源抑制特性。
該電路采用CSMC公司0.6/μm的工藝,仿真使用49級模型,得到以下結(jié)果:
(1)溫度系數(shù)。仿真是在輸入電壓4.0 V,溫度為-40~+100℃的條件下進行的。從圖3中可以看到基準電壓從-40℃的0.963 32 V變化到30℃時的0.962 35 V,因此該基準的溫度系數(shù)為(ppm/℃):
(2)基準電壓的電源抑制比?;鶞孰妷旱碾娫匆种票热鐖D4所示。
從圖4和圖5可以看到,如果沒有增加M2,低頻時的PSRR只有-90 dB,高頻時則大約為-75 dB,電源抑制比的特性不是很好;如果增加了M2管,低頻時的PSRR為-120 dB,高頻時也能控制在-90 dB內(nèi),電源抑制比得到了極大的提高。
(3)基準電壓的線性調(diào)整率。圖6為基準電壓的線性調(diào)整率特性曲線。從圖6中可以看到,基準電壓的線性調(diào)整率隨溫度的上升而減小。在25℃時,基準電壓從輸入電壓2.5 V對應的1.027 952 V變化到輸入電壓5.5 V對應的1.027 982 V,其線性調(diào)整率為:
3 結(jié) 語
在此分析介紹了一種低功耗基準電壓源電路的設計方案,該電路的最大功耗小于1μW,溫度系數(shù)為21 ppm/℃;同時由于電路結(jié)果較簡單,易于集成,已經(jīng)用于電池充電保護芯片。