本文介紹了一種基于諧波補(bǔ)償的逆變器波形控制技術(shù),分析了系統(tǒng)的工作原理,詳細(xì)探討了控制系統(tǒng)參數(shù)設(shè)計(jì)方法,并得出了試驗(yàn)結(jié)果。逆變器是一種重要的DC/AC變換裝置。衡量其性能的一個(gè)重要指標(biāo)是輸出電壓波形質(zhì)量,一個(gè)好的逆變器,它的輸出電壓波形應(yīng)該盡量接近正弦,總諧波畸變率(THD)應(yīng)該盡量小。在實(shí)際應(yīng)用中逆變器經(jīng)常需要接整流型負(fù)載,在這種情況下僅僅采用SPWM調(diào)制技術(shù)的逆變器,其輸出電壓波形就會產(chǎn)生很大的畸變。 為了得到THD小的輸出電壓,波形控制技術(shù)近年來得到了極大的發(fā)展。重復(fù)控制是近年來研究得比較多的一種控制方案。本文從諧波補(bǔ)償?shù)慕嵌瘸霭l(fā),采用改進(jìn)型FFT算法對輸出電壓誤差信號進(jìn)行實(shí)時(shí)頻譜分析,把由軟件算法產(chǎn)生的經(jīng)過預(yù)畸變的諧波信號注入逆變器,由此達(dá)到抑制非線性擾動(dòng)從而校正輸出電壓波形的目的。
G1(s)表示控制對象,在這里就是輸出LC濾波器的傳遞函數(shù),其離散化形式由G1(z)表示。G2(z)表示內(nèi)部模型,它與G1(z)相等。
1 擾動(dòng)抑制原理:考慮擾動(dòng)信號d(z)在輸出點(diǎn)的響應(yīng)。由圖1可以很容易得到擾動(dòng)信號的傳函 Hd(z)=1-{[Gc(z)G1(z)]/1+[G1(z)-G2(z)]Gc(z)} (1) 由于G1(z)=G2(z),故Hd(z)可簡化為 Hd(z)=1-Gc(z)G1(z) (2) 顯然,只要Gc(z)=G1-1(z),則Hd(z)=0,即擾動(dòng)可以得到完全的抑制。不幸的是,實(shí)際逆變器的z域傳遞函數(shù)含有一個(gè)純延時(shí)環(huán)節(jié),這就意味著諧波補(bǔ)償器Gc(z)必須含有一個(gè)超前環(huán)節(jié),這在物理上是無法實(shí)現(xiàn)的。但在實(shí)際應(yīng)用中我們只須抑制低次諧波就可以獲得較好的輸出電壓波形,所以,只需要使諧波補(bǔ)償器低頻段頻率特性是控制對象G1(s)低頻段頻率特性就可以了。而這是很容易做到的,本文把這種低頻段頻率特性意義上的逆稱為“等效逆”。 2 內(nèi)部模型:內(nèi)部模型G2(z)就等于G1(s)的離散化形式G1(z),它的作用就是模擬控制對象的特性,作為參考信號源。在實(shí)際系統(tǒng)中,內(nèi)部模型作為整個(gè)數(shù)字控制系統(tǒng)的一部分,由DSP軟件算法實(shí)現(xiàn)。
3 諧波補(bǔ)償器:諧波補(bǔ)償器由FFT和諧波發(fā)生器組成。FFT算法對輸出電壓誤差進(jìn)行實(shí)時(shí)頻譜分析,因?yàn)椋孀兤鹘诱餍拓?fù)載,其輸出電壓畸變主要是由于在輸出端疊加了次數(shù)較低的奇次諧波,所以,只須分析出1,3,5,7,9次諧波的幅值和初相位就可以滿足要求。 設(shè)x(n)為N點(diǎn)有限長序列,其FFT為
式中:k=0,1,…,N-1;
顯然,常規(guī)的FFT算法,其輸出點(diǎn)數(shù)和輸入點(diǎn) 數(shù)是相等的,但在本系統(tǒng)中只須求出X(1),X(3), X(5),X(7),X(9)等5個(gè)輸出點(diǎn),其他輸出點(diǎn)是不須計(jì)算的。根據(jù)基于FFT的蝶形計(jì)算可以知道,在只須計(jì)算指定的若干個(gè)輸出點(diǎn)的情況下,可以大大減少計(jì)算量,節(jié)省大量的DSP時(shí)鐘,這就使得在計(jì)算能力并不強(qiáng)大的F240定點(diǎn)DSP上,實(shí)現(xiàn)基于FFT算法的實(shí)時(shí)頻譜分析成為了可能。本文把這種經(jīng)過化簡的算法稱為改進(jìn)型FFT算法。 諧波發(fā)生器的作用是把FFT分析出的諧波進(jìn)行預(yù)畸變,然后把預(yù)畸變的諧波信號作為補(bǔ)償指令送給控制對象。之所以要對諧波進(jìn)行預(yù)畸變,是因?yàn)榭刂茖ο髮χC波的跟蹤是有差的,這就導(dǎo)致諧波信號通過被控對象到達(dá)擾動(dòng)注入點(diǎn)時(shí),并不與擾動(dòng)信號形狀相同,而是相位正好相差180%26,#176的信號,這樣就無法很好地抵消擾動(dòng)。諧波發(fā)生器的預(yù)畸變算法表達(dá)式如下:
式中:|X(n)|為諧波幅值;pha(n)為諧波的初相位,它們由FFT算法計(jì)算得到;modcoeff(n)為幅值補(bǔ)償系數(shù);phacoeff(n)為相位補(bǔ)償系數(shù)。 式(4)為單次諧波的補(bǔ)償指令計(jì)算式,式(5)為系統(tǒng)需要補(bǔ)償?shù)乃兄C波的總補(bǔ)償指令計(jì)算式,它是各單次諧波補(bǔ)償指令的簡單累加。
幅值補(bǔ)償系數(shù)modcoeff(n)和相位補(bǔ)償系數(shù)phacoeff(n)可以通過控制對象的幅頻、相頻特性根據(jù)“等效逆”的原則簡單地確定。具體來說,modcoeff(n)就是幅頻特性頻率對應(yīng)點(diǎn)讀數(shù)的倒數(shù),phacoeff(n)就是相頻特性頻率對應(yīng)點(diǎn)讀數(shù)的負(fù)數(shù)??梢钥闯?,諧波補(bǔ)償器補(bǔ)償系數(shù)的確定是非常簡單的,這是本文所用控制方案的一大優(yōu)點(diǎn)。
控制系統(tǒng)參數(shù)設(shè)計(jì)
1 FFT采樣頻率fs和分析窗長度L的確定采用FFT算法進(jìn)行實(shí)時(shí)頻譜分析,采樣頻率fs和分析窗長度L的確定是非常重要的。假設(shè)所需要分析信號的最高頻率為fmax。根據(jù)香農(nóng)采樣定律,只須滿足 fs≥2fmax(6) 就可以使被分析信號在頻域中不產(chǎn)生混疊。在這里,基波是50Hz,最高只需要分析到9次諧波,所以fmax=450Hz。為了留有一定的裕量,在實(shí)際系統(tǒng)中fs取1.6kHz。
分析窗長度L對于周期信號的頻譜分析也是極其重要的,一般都把L取為被分析信號周期的整數(shù)倍,否則,會造成嚴(yán)重的頻譜泄漏,大大降低頻譜分析精度。顯然,實(shí)際系統(tǒng)中被分析的誤差電壓信號周期就是基波周期,即為0.02s。所以就把L取為0.02s(即為周期的一倍)。 根據(jù)FFT的輸入數(shù)據(jù)點(diǎn)數(shù)N的計(jì)算式:N=fs%26,#215;L,以及采樣頻率fs和分析窗長度L的取值, 可以得到N=32。這就是說,本控制系統(tǒng)須做32點(diǎn)的FFT。
2 幅值補(bǔ)償系數(shù)和相位補(bǔ)償系數(shù)的確定在圖2中,電壓源U代表來自逆變橋的輸出電壓,電感L和電容C 構(gòu)成輸出LC濾波器,電流源I代表負(fù)載汲取的電流,與濾波電感L串聯(lián)的電阻r是濾波電感的等效串聯(lián)電阻。由圖2可知,在把逆變橋看作一個(gè)比例環(huán)節(jié)的情況下,逆變器的數(shù)學(xué)模型就是由輸出LC濾波器構(gòu)成的二階系統(tǒng)。在本系統(tǒng)中,L=0.552mH,r=0.3Ω,C=135μF,所以逆變器數(shù)學(xué)模型為 G1(s)=3663 2/(s2+2%26;#215;0.074%26;#215;3663s+3663 ,它的離散化表達(dá)式為 G1(z)=(0.1007z+0.09845)/(z2 -1.735z+0.9343) 。根據(jù)圖3,可以很方便地得到幅值補(bǔ)償系數(shù)modcoeff(n)和相位補(bǔ)償系數(shù)phacoeff(n)。
實(shí)驗(yàn)波形如圖4,圖5和圖6所示。
圖4給出了逆變器接阻性負(fù)載的穩(wěn)態(tài)輸出電壓和電流波形。圖5及圖6分別給出了逆變器在接整流型負(fù)載情況下開環(huán)穩(wěn)態(tài)、閉環(huán)穩(wěn)態(tài)的實(shí)驗(yàn)波形??梢钥闯鲩_環(huán)情況下輸出電壓波形畸變嚴(yán)重,閉環(huán)以后輸出電壓波形有了極大的改善。
結(jié)語
本文采用了一種與重復(fù)控制不同的波形控制方案。實(shí)驗(yàn)結(jié)果表明,本文采用的改進(jìn)型FFT算法大大減少了計(jì)算量,保證了在F240定點(diǎn)DSP上實(shí)現(xiàn)實(shí)時(shí)頻譜分析,并且整個(gè)控制系統(tǒng)擁有較好的穩(wěn)態(tài)性能。這說明本文采用的控制方案在理論上是正確的,實(shí)踐上是可行的。而且,這種基于諧波補(bǔ)償思想的控制技術(shù)還有諧波補(bǔ)償器補(bǔ)償系數(shù)設(shè)計(jì)簡單的優(yōu)點(diǎn)??傊?,該控制方案具有較好的性能,還有一些獨(dú)特的優(yōu)點(diǎn),有一定的實(shí)用價(jià)值。