《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計(jì)應(yīng)用 > 無線定位與慣性導(dǎo)航結(jié)合的室內(nèi)定位系統(tǒng)設(shè)計(jì)
無線定位與慣性導(dǎo)航結(jié)合的室內(nèi)定位系統(tǒng)設(shè)計(jì)
來源:電子技術(shù)應(yīng)用2014年第4期
周 亮, 付永濤, 李廣軍
(電子科技大學(xué) 通信與信息工程學(xué)院,四川 成都611731)
摘要: 面對(duì)室內(nèi)定位的實(shí)際應(yīng)用需求,分析了基于接收信號(hào)強(qiáng)度指紋法定位技術(shù)精度較低、單純的慣性導(dǎo)航累積誤差較大等問題,采用基于信賴度的聯(lián)合定位算法對(duì)多種信息進(jìn)行融合處理,以獲得較高的綜合定位精度。通過基于ZigBee的無線傳感器網(wǎng)絡(luò)平臺(tái)及多種MEMS運(yùn)動(dòng)傳感器的聯(lián)合,設(shè)計(jì)并實(shí)現(xiàn)了多信息融合的室內(nèi)定位演示系統(tǒng)。由于多種信息的融合,不需要依賴大量樣本的指紋庫,從而降低了實(shí)現(xiàn)過程中離線指紋庫建立的工作量。經(jīng)實(shí)驗(yàn)數(shù)據(jù)分析,基于信賴度的聯(lián)合定位方法具有較高的定位精度和較低的實(shí)現(xiàn)復(fù)雜度。
中圖分類號(hào): TP391
文獻(xiàn)標(biāo)識(shí)碼: A
文章編號(hào): 0258-7998(2014)04-0073-04
Design of indoor positioning system based on inertial navigation and wireless location
Zhou Liang, Fu Yongtao, Li Guangjun
School of Communication and Information Engineering, University of Electronic Science and Technology of China,Chengdu 611731, China
Abstract: In the indoor positioning, the accuracy of the fingerprint method based on the received signal strength is low, and the simplex inertial navigation has the problems of error accumulating, so the localization algorithm based on reliability for a variety of information fusion processing is presented. The wireless sensor network platform for demonstration based on ZigBee with a variety of joint MEMS motion sensors was designed and implemented. Due to the information fusion, the establishing of the offline fingerprint library is simplified. By the analysis of experimental data, the joint positioning method has higher precision and lower implementation complexity.
Key words : indoor positioning; wireless location; inertial navigation; wireless sensor network

    基于位置的服務(wù)可以為用戶提供周邊環(huán)境信息查詢、定位或者跟蹤特殊目標(biāo)、路徑導(dǎo)航等服務(wù),具有很好的實(shí)用價(jià)值和應(yīng)用前景。GPS是當(dāng)前使用最廣泛的室外定位系統(tǒng),但是由于遮擋等原因,不能在建筑物內(nèi)或地下空間使用,因此在室內(nèi)環(huán)境中需要由其他定位系統(tǒng)來獲取目標(biāo)位置信息。
    在目前的室內(nèi)定位系統(tǒng)中,大多是基于無線信號(hào)的定位,包括基于RSS(Receive Signal Strength)、AOA(Angle-Of-Arrival)、TOA(Time-Of-Arrival)、TDOA(Time-Difference-Of-Arrival)[1-2]等定位技術(shù),其中基于RSS的定位具有方法簡(jiǎn)單、成本低等優(yōu)點(diǎn)。通過接收到的錨節(jié)點(diǎn)信號(hào)強(qiáng)度信息,以電波傳播經(jīng)驗(yàn)公式反演出距離信息,再利用數(shù)值的或擬合的方法即可得出被測(cè)目標(biāo)的位置信息。但是由于室內(nèi)環(huán)境的復(fù)雜性,室內(nèi)電波傳播具有較強(qiáng)的時(shí)變特性,指紋法定位[3-6]較傳統(tǒng)的基于電波傳播模型的定位能更準(zhǔn)確地獲取目標(biāo)的空間位置,因而被廣泛應(yīng)用于室內(nèi)定位系統(tǒng)中。指紋法的定位精度受離線階段建立的指紋庫的精細(xì)程度影響很大,高精細(xì)度指紋庫的建立耗時(shí)費(fèi)力,阻礙了指紋法的實(shí)際應(yīng)用。利用加速度計(jì)、磁強(qiáng)計(jì)、陀螺儀等運(yùn)動(dòng)傳感器能夠精確地測(cè)得物體的運(yùn)動(dòng)信息[7],通過這些信息可以得到載體的航向和距離,再根據(jù)初始位置信息推算其位置,以實(shí)現(xiàn)載體的慣性導(dǎo)航。在嵌入式設(shè)備中通常使用MEMS傳感器來獲取相應(yīng)的數(shù)據(jù),但這些傳感器存在較大的固有誤差和隨機(jī)測(cè)量誤差等,長(zhǎng)時(shí)間的誤差積累會(huì)導(dǎo)致導(dǎo)航精度的下降,因此不適于長(zhǎng)期單獨(dú)工作。
    本文將基于RSS指紋的無線定位方法與基于運(yùn)動(dòng)傳感器的航跡推算方法相結(jié)合,融合兩種方法的定位信息,提高了系統(tǒng)整體定位精度;同時(shí)減少了指紋法中離線階段的指紋庫采集量,也解決了單純慣導(dǎo)累計(jì)誤差大的問題;設(shè)計(jì)并實(shí)現(xiàn)了具有一定實(shí)用價(jià)值的室內(nèi)定位系統(tǒng)。
1 指紋法無線定位
    指紋法的實(shí)施主要有兩個(gè)階段:離線指紋庫建立階段和在線定位階段。指紋法定位原理如圖1所示。在離線階段,對(duì)一些標(biāo)定位置進(jìn)行RSS信息的采集,建立樣本點(diǎn)RSS指紋數(shù)據(jù)庫。在線實(shí)時(shí)定位階段,根據(jù)目標(biāo)節(jié)點(diǎn)獲取到的RSS信息,通過一定的算法與指紋庫中的指紋信息進(jìn)行匹配,匹配成功后即可獲得目標(biāo)節(jié)點(diǎn)的位置估計(jì)。指紋庫的匹配算法有很多類型,其中直接計(jì)算指紋距離的方法簡(jiǎn)單且易于實(shí)現(xiàn)。將獲取的目標(biāo)節(jié)點(diǎn)RSS信息與指紋庫中的各樣本點(diǎn)信息進(jìn)行比對(duì),計(jì)算其與每個(gè)樣本點(diǎn)的歐式距離,直接選取距離最小的樣本點(diǎn)位置即可作為對(duì)目標(biāo)節(jié)點(diǎn)位置的估計(jì)。但由于指紋庫中樣本點(diǎn)的數(shù)量通常比較稀少,各樣本點(diǎn)之間的距離很大,所以這種簡(jiǎn)單的匹配方法得出的結(jié)果精度較差。為提高定位的精度,可以選取匹配距離最小的3個(gè)樣本點(diǎn)坐標(biāo),以目標(biāo)節(jié)點(diǎn)RSS信息與樣本點(diǎn)RSS信息的歐式距離作為權(quán)值進(jìn)行加權(quán)質(zhì)心計(jì)算,將其結(jié)果作為估計(jì)的目標(biāo)位置坐標(biāo)。

    由于指紋庫樣本點(diǎn)數(shù)量有限,且在現(xiàn)實(shí)場(chǎng)景中無線電波的傳播受環(huán)境變化影響很大,測(cè)得的RSS值會(huì)有較大的波動(dòng),因此通過指紋法作加權(quán)質(zhì)心估計(jì)的目標(biāo)位置仍然不會(huì)有太高的精度。
2 基于運(yùn)動(dòng)傳感器的慣性導(dǎo)航和定位
 利用MEMS運(yùn)動(dòng)傳感器提供的地磁方向、旋轉(zhuǎn)速率、加速度等傳感數(shù)據(jù),通過航跡推算算法可以估計(jì)運(yùn)動(dòng)的方向和距離,從而估計(jì)出目標(biāo)的實(shí)時(shí)位置。
 測(cè)量磁傳感器的磁場(chǎng)強(qiáng)度,通過與地磁方向的比較計(jì)算,可以得出目標(biāo)的運(yùn)動(dòng)航偏角,但單純的磁傳感器存在高頻抖動(dòng)和測(cè)量誤差等問題,會(huì)導(dǎo)致航偏角出現(xiàn)偏差;利用陀螺儀測(cè)得的角速度數(shù)據(jù)通過積分也可以得到航偏角,但陀螺儀存在低頻的指向漂移等問題,也會(huì)導(dǎo)致航偏角指向不準(zhǔn)。因此為減小磁傳感器的抖動(dòng)誤差以及陀螺儀指向漂移的問題,通常采用卡爾曼濾波或互補(bǔ)濾波器[8-9]的方法對(duì)傳感數(shù)據(jù)進(jìn)行處理。這兩種方法中,前者收斂速度慢,對(duì)處理器的性能有較高的要求,并且實(shí)現(xiàn)復(fù)雜度高,而后者結(jié)構(gòu)簡(jiǎn)單,相對(duì)更易于實(shí)現(xiàn),因此本文采用互補(bǔ)濾波器融合兩種方法測(cè)得的數(shù)據(jù),減小了航偏角的最終誤差。互補(bǔ)濾波器的結(jié)構(gòu)如圖2所示。首先,磁力傳感器的數(shù)據(jù)通過低通濾波器濾除高頻的抖動(dòng)噪聲,然后通過計(jì)算得到估計(jì)的航偏角;陀螺儀的數(shù)據(jù)經(jīng)過積分,并通過高通濾波器濾除低頻的漂移噪聲,得到估計(jì)的航偏角。最后將得到的這兩組數(shù)據(jù)加權(quán)求和得到最終的航偏角。

    獲得載體的運(yùn)動(dòng)方向后,再通過加速度傳感器可以測(cè)得系統(tǒng)的總體加速度,由于加速度傳感器容易受運(yùn)動(dòng)影響產(chǎn)生高頻抖動(dòng),故在應(yīng)用前需對(duì)數(shù)據(jù)進(jìn)行低通濾波。將總體加速度在運(yùn)動(dòng)方向上進(jìn)行投影即可得到載體實(shí)際運(yùn)動(dòng)的加速度。最后將加速度信息對(duì)時(shí)間進(jìn)行二次積分即可得到載體在運(yùn)動(dòng)方向上的距離。由于常用的MEMS傳感器存在較大的固有誤差和隨機(jī)測(cè)量誤差等,因此長(zhǎng)時(shí)間積分會(huì)導(dǎo)致較大的累積位置誤差。
3 兩種方法融合的定位系統(tǒng)設(shè)計(jì)
    為解決單純的指紋法或慣性導(dǎo)航精度偏低的問題,可以將無線定位和慣性導(dǎo)航的信息進(jìn)行融合,以更小的代價(jià)獲取更高的定位性能,其定位原理如圖3所示。利用運(yùn)動(dòng)傳感器獲得的地磁方向、旋轉(zhuǎn)速率、加速度等傳感數(shù)據(jù),通過航跡推算算法可以估計(jì)運(yùn)動(dòng)的方向和距離。基于RSS指紋的定位方法利用與錨節(jié)點(diǎn)通信的RSS信息,在指紋庫中進(jìn)行匹配,匹配成功后可以估計(jì)目標(biāo)的位置信息。以室內(nèi)二維平面定位為例,由預(yù)先設(shè)定的初始位置對(duì)航跡推算系統(tǒng)的起始位置進(jìn)行初始化,在載體運(yùn)動(dòng)過程中,當(dāng)獲取到兩種方式的定位估計(jì)值之后,利用信賴度對(duì)其結(jié)果進(jìn)行加權(quán)融合,得到最終的聯(lián)合定位位置。

    在實(shí)際應(yīng)用中,設(shè)指紋法RSS采集周期為T1,運(yùn)動(dòng)傳感器采集周期為T2,通常情況下T1>T2,即在一個(gè)RSS采集周期內(nèi)會(huì)有連續(xù)多個(gè)運(yùn)動(dòng)傳感信息。因此,僅在每個(gè)T1周期時(shí)刻上由式(3)進(jìn)行定位信息的融合,并將融合的位置作為每輪的初始位置,在T1時(shí)間間隔內(nèi)由慣性導(dǎo)航推算載體運(yùn)動(dòng)位置。采用以上方法得到的運(yùn)動(dòng)軌跡由于多種測(cè)量誤差的影響會(huì)表現(xiàn)出位置的波動(dòng),可以通過滑動(dòng)平均等簡(jiǎn)單的方法對(duì)位置信息進(jìn)行濾波,得到最終的運(yùn)動(dòng)軌跡。
4 系統(tǒng)搭建及測(cè)試驗(yàn)證
    在測(cè)試中采用由TI公司CC2430芯片構(gòu)成的滿足ZigBee標(biāo)準(zhǔn)的無線傳感器網(wǎng)絡(luò)節(jié)點(diǎn),該節(jié)點(diǎn)具備自組織網(wǎng)絡(luò)功能,并能實(shí)時(shí)獲取與其余節(jié)點(diǎn)通信的接收信號(hào)強(qiáng)度值,可以實(shí)現(xiàn)指紋法的無線定位。通過在擴(kuò)展接口上連接多種MEMS運(yùn)動(dòng)傳感器模塊,可以實(shí)時(shí)測(cè)得載體的運(yùn)動(dòng)方向和加速度信息。對(duì)于這些信息的處理既可以采用集中式的處理也可以由各個(gè)節(jié)點(diǎn)進(jìn)行分布式處理。由于自組織網(wǎng)絡(luò)具有一定的通信能力,且RSS信息和運(yùn)動(dòng)傳感器信息的數(shù)據(jù)量通常較小,所以在本文的測(cè)試驗(yàn)證中將這些信息發(fā)送至上位機(jī)進(jìn)行集中演算處理,以避免節(jié)點(diǎn)自身計(jì)算資源不夠、計(jì)算速度較慢的問題。
    在指紋法無線定位中,首先需要布置固定位置的錨節(jié)點(diǎn),并建立可以通信的無線傳感器網(wǎng)絡(luò),然后在測(cè)試區(qū)域內(nèi)多個(gè)樣本點(diǎn)測(cè)量RSS值,以收集指紋信息建立標(biāo)準(zhǔn)指紋庫,該指紋庫存放于上位機(jī)中。在物體定位跟蹤過程中,將帶有MEMS運(yùn)動(dòng)傳感器的節(jié)點(diǎn)附帶于物體之上,與載體一同運(yùn)動(dòng)。在運(yùn)動(dòng)中,節(jié)點(diǎn)將實(shí)時(shí)測(cè)得的RSS值和傳感器信息傳送至上位機(jī),由上位機(jī)使用基于信賴度的聯(lián)合定位算法完成各類信息的計(jì)算和融合,最終獲得載體的位置信息。
    測(cè)試工作在一間7 m×7.5 m的房間中進(jìn)行,測(cè)試場(chǎng)景如圖4所示。其中小圓圈表示錨節(jié)點(diǎn),星號(hào)表示用于構(gòu)造指紋庫的樣本點(diǎn)采集位置,實(shí)線表示被測(cè)目標(biāo)的實(shí)際運(yùn)動(dòng)軌跡。測(cè)試載體為一平板小車,帶有MEMS傳感器的節(jié)點(diǎn)固定于小車之上,從位置(0.9 m,2.1 m)開始沿實(shí)線箭頭方向運(yùn)動(dòng),最終停止于位置(0.9 m,2.5 m)處。

 

 

    在測(cè)試過程中,設(shè)定RSS采集周期T1=2 s,運(yùn)動(dòng)傳感器采集周期T2=0.1 s,根據(jù)實(shí)驗(yàn)經(jīng)驗(yàn),設(shè)定指紋法信賴度閾值θ=20,設(shè)定慣性導(dǎo)航信賴度時(shí)間x=20 s,閾值ω=0.4。測(cè)試結(jié)果如圖5所示。其中實(shí)線表示被測(cè)目標(biāo)的實(shí)際運(yùn)動(dòng)軌跡,點(diǎn)劃線表示單純指紋法估計(jì)的軌跡,點(diǎn)線表示單純慣性導(dǎo)航估計(jì)的軌跡,虛線表示基于信賴度的聯(lián)合定位算法融合定位的最終軌跡。

    從測(cè)試結(jié)果可以看出,單純的指紋法定位由于受電磁波傳播環(huán)境變化的影響,所以軌跡跳動(dòng)很頻繁,而單純的慣性導(dǎo)航由于測(cè)量誤差的累積導(dǎo)致位置偏移越來越大,而融合后的定位軌跡精度最高,且隨機(jī)波動(dòng)也較小。通過對(duì)所有測(cè)試點(diǎn)進(jìn)行的數(shù)值統(tǒng)計(jì),指紋法的平均定位誤差為1.34 m,慣性導(dǎo)航的平均定位誤差為1.89 m,基于信賴度的聯(lián)合定位算法的平均定位誤差為0.81 m,驗(yàn)證了該方法對(duì)定位精度提高的有效性。
參考文獻(xiàn)
[1] GUSTAFSSOR F,GUNNARSSON F.Mobile positioning using wireless networks: Possibilities and fundamental limitations based on available wireless network measurements[J]. IEEE Signal Process.Magazine, 2005,22(4):41-53.
[2] GOLDEN S A, BATEMAN S S. Sensor measurements for WiFi location with emphasis on time-of-arrival ranging[J]. IEEE Transactions on Mobile Computing, 2007,6(10):1185-1198.
[3] YAO Q M, WANG F Y, GAO H, et al. Location estimation in ZigBee network based on fingerprinting[C]. IEEE International Conference on Vehicular Electronics and Safety, ICVES, 2007.
[4] KUSHKI A,PLATANIOTIS K N,VENETSANOPOULOS A N. Kernel-based positioning in wireless local area networks[J].IEEE Transactions on Mobile Computing, 2007,6(6):689-705.
[5] OUTEMZABET S, NERGUIZIAN C. Accuracy enhancement of an indoor ANN-based fingerprinting location system using particle filtering and a low-cost sensor[C].IEEE Vehicular Technology Conference, 2008: 2750-2754.
[6] JI Y M, BIAZ S, PANDEY S, et al. Ariadne: a dynamic indoor signal map construction and localization system[C]. MobiSys 2006-Fourth International Conference on Mobile Systems, Applications and Services, 2006:151-164.
[7] 李澤民,段鳳陽,李贊平. 基于MEMS傳感器的數(shù)字式航姿系統(tǒng)設(shè)計(jì)[J]. 傳感器與微系統(tǒng), 2012,31(6):94-100.
[8] 梁延德, 程敏, 何福本,等. 基于互補(bǔ)濾波器的四旋翼飛行器姿態(tài)解算[J]. 傳感器與微系統(tǒng), 2011,30(11):56-61.
[9] 郭曉鴻,楊忠,陳喆,等. EKF和互補(bǔ)濾波器在飛行姿態(tài)確定中的應(yīng)用[J]. 傳感器與微系統(tǒng), 2011,30(11):149-152.

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。