我們現(xiàn)在的智能手機(jī)、電視、電腦、空調(diào)等等東西都在向智能化的方向發(fā)展,要想實現(xiàn)這個“智能”,達(dá)到很高的境界就好像真的人為控制一樣,人們一直為此努力,可能你不知道,在現(xiàn)在的生活中控制這些東西的就是“處理器”這個東西,人們把一定的規(guī)則編程輸入,模擬人類行為。
現(xiàn)在我們說什么高通、英特爾等等它們都是生產(chǎn)處理器的著名廠商。
生產(chǎn)出來這個東西,就是處理器,你們可能了解幾核心、處理速度等等,但是它是怎么工作的,你知道嗎?
世界第一臺計算機(jī)出現(xiàn),造成體積龐大的原因就是等眾多的二極管、電線組成的處理器,但是自從集成電路和微型晶片出來以后,從此計算機(jī)微型化開始,不斷的縮小變種。所以現(xiàn)在的手機(jī)、電腦等等用的處理器工作原理都是一樣的。
處理器說的通俗易懂就是有很多開關(guān)通過控制進(jìn)行組合打開關(guān)閉的操作來讓電子通過,控制電子設(shè)備,所有的電子設(shè)備都有自己的開關(guān)和電路,通過打開這些開關(guān)進(jìn)行組合,控制這些電子設(shè)備的打開關(guān)閉,這就是處理器最基本的運(yùn)作方式。
現(xiàn)在的CPU是在特別純凈的硅材料上面制造的,通過光刻,一個CPU芯片上面包含了上百萬個晶體管,而這些晶體管就是所謂的微型開關(guān),它是構(gòu)建CPU的基石。編程的人都知道,電腦只認(rèn)識“0”和“1”,而“0”和“1”就相當(dāng)于晶體管的兩種狀態(tài):開 、關(guān),這樣的運(yùn)作方式表現(xiàn)出來就是處理器的處理信息的能力。
那你一定就有點(diǎn)納悶,晶體管又是如何利用“0”和“1”這兩種電子信號來執(zhí)行指令和處理數(shù)據(jù)的呢?
其實,所有電子設(shè)備都有自己的電路和開關(guān),電子在電路中流動或斷開,完全由開關(guān)來控制,如果你將開關(guān)設(shè)置為OFF,電子將停止流動,如果你再將其設(shè)置為ON,電子又會繼續(xù)流動。晶體管的這種ON與OFF的切換只由電子信號控制,我們可以將晶體管稱之為二進(jìn)制設(shè)備。這樣,晶體管的ON狀態(tài)用“1”來表示,而OFF狀態(tài)則用“0”來表示,就可以組成最簡單的二進(jìn)制數(shù)。眾多晶體管產(chǎn)生的多個“1”與“0”的特殊次序和模式能代表不同的情況,將其定義為字母、數(shù)字、顏色和圖形。舉個例子,十進(jìn)位中的1在二進(jìn)位模式時也是“1”,2在二進(jìn)位模式時是“10”,3是“11”,4是“100”,5是“101”,6是“110”等等,依此類推,這就組成了計算機(jī)工作采用的二進(jìn)制語言和數(shù)據(jù)。成組的晶體管聯(lián)合起來可以存儲數(shù)值,也可以進(jìn)行邏輯運(yùn)算和數(shù)字運(yùn)算。加上石英時鐘的控制,晶體管組就像一部復(fù)雜的機(jī)器那樣同步地執(zhí)行它們的功能。
而一個擁有計算能力的處理器并不光光是二極管,而是有非常復(fù)雜的結(jié)構(gòu)組成,那么復(fù)雜處理數(shù)據(jù)和執(zhí)行程序是怎么實現(xiàn)的呢?
1.算術(shù)邏輯單元ALU(Arithmetic Logic Unit)
ALU是運(yùn)算器的核心。它是以全加器為基礎(chǔ),輔之以移位寄存器及相應(yīng)控制邏輯組合而成的電路,在控制信號的作用下可完成加、減、乘、除四則運(yùn)算和各種邏輯運(yùn)算。就像剛才提到的,這里就相當(dāng)于工廠中的生產(chǎn)線,負(fù)責(zé)運(yùn)算數(shù)據(jù)。
2.寄存器組 RS(Register Set或Registers)
RS實質(zhì)上是CPU中暫時存放數(shù)據(jù)的地方,里面保存著那些等待處理的數(shù)據(jù),或已經(jīng)處理過的數(shù)據(jù),CPU訪問寄存器所用的時間要比訪問內(nèi)存的時間短。采用寄存器,可以減少CPU訪問內(nèi)存的次數(shù),從而提高了CPU的工作速度。但因為受到芯片面積和集成度所限,寄存器組的容量不可能很大。寄存器組可分為專用寄存器和通用寄存器。專用寄存器的作用是固定的,分別寄存相應(yīng)的數(shù)據(jù)。而通用寄存器用途廣泛并可由程序員規(guī)定其用途。通用寄存器的數(shù)目因微處理器而異。
3.控制單元(Control Unit)
正如工廠的物流分配部門,控制單元是整個CPU的指揮控制中心,由指令寄存器IR(Instruction Register)、指令譯碼器ID(Instruction Decoder)和操作控制器OC(Operation Controller)三個部件組成,對協(xié)調(diào)整個電腦有序工作極為重要。它根據(jù)用戶預(yù)先編好的程序,依次從存儲器中取出各條指令,放在指令寄存器IR中,通過指令譯碼(分析)確定應(yīng)該進(jìn)行什么操作,然后通過操作控制器OC,按確定的時序,向相應(yīng)的部件發(fā)出微操作控制信號。操作控制器OC中主要包括節(jié)拍脈沖發(fā)生器、控制矩陣、時鐘脈沖發(fā)生器、復(fù)位電路和啟停電路等控制邏輯。
4.總線(Bus)
就像工廠中各部位之間的聯(lián)系渠道,總線實際上是一組導(dǎo)線,是各種公共信號線的集合,用于作為電腦中所有各組成部分傳輸信息共同使用的“公路”。直接和CPU相連的總線可稱為局部總線。其中包括: 數(shù)據(jù)總線DB(Data Bus)、地址總線AB(Address Bus) 、控制總線CB(Control Bus)。其中,數(shù)據(jù)總線用來傳輸數(shù)據(jù)信息;地址總線用于傳送CPU發(fā)出的地址信息;控制總線用來傳送控制信號、時序信號和狀態(tài)信息等。
CPU的工作流程
由晶體管組成的CPU是作為處理數(shù)據(jù)和執(zhí)行程序的核心,其英文全稱是:Central Processing Unit,即中央處理器。首先,CPU的內(nèi)部結(jié)構(gòu)可以分為控制單元,邏輯運(yùn)算單元和存儲單元(包括內(nèi)部總線及緩沖器)三大部分。CPU的工作原理就像一個工廠對產(chǎn)品的加工過程:進(jìn)入工廠的原料(程序指令),經(jīng)過物資分配部門(控制單元)的調(diào)度分配,被送往生產(chǎn)線(邏輯運(yùn)算單元),生產(chǎn)出成品(處理后的數(shù)據(jù))后,再存儲在倉庫(存儲單元)中,最后等著拿到市場上去賣(交由應(yīng)用程序使用)。在這個過程中,我們注意到從控制單元開始,CPU就開始了正式的工作,中間的過程是通過邏輯運(yùn)算單元來進(jìn)行運(yùn)算處理,交到存儲單元代表工作的結(jié)束。
數(shù)據(jù)與指令在CPU中的運(yùn)行
剛才已經(jīng)為大家介紹了CPU的部件及基本原理情況,現(xiàn)在,我們來看看數(shù)據(jù)是怎樣在CPU中運(yùn)行的。我們知道,數(shù)據(jù)從輸入設(shè)備流經(jīng)內(nèi)存,等待CPU的處理,這些將要處理的信息是按字節(jié)存儲的,也就是以8位二進(jìn)制數(shù)或8比特為1個單元存儲,這些信息可以是數(shù)據(jù)或指令。數(shù)據(jù)可以是二進(jìn)制表示的字符、數(shù)字或顏色等等。而指令告訴CPU對數(shù)據(jù)執(zhí)行哪些操作,比如完成加法、減法或移位運(yùn)算。
我們假設(shè)在內(nèi)存中的數(shù)據(jù)是最簡單的原始數(shù)據(jù)。首先,指令指針(Instruction Pointer)會通知CPU,將要執(zhí)行的指令放置在內(nèi)存中的存儲位置。因為內(nèi)存中的每個存儲單元都有編號(稱為地址),可以根據(jù)這些地址把數(shù)據(jù)取出,通過地址總線送到控制單元中,指令譯碼器從指令寄存器IR中拿來指令,翻譯成CPU可以執(zhí)行的形式,然后決定完成該指令需要哪些必要的操作,它將告訴算術(shù)邏輯單元(ALU)什么時候計算,告訴指令讀取器什么時候獲取數(shù)值,告訴指令譯碼器什么時候翻譯指令等等。
假如數(shù)據(jù)被送往算術(shù)邏輯單元,數(shù)據(jù)將會執(zhí)行指令中規(guī)定的算術(shù)運(yùn)算和其他各種運(yùn)算。當(dāng)數(shù)據(jù)處理完畢后,將回到寄存器中,通過不同的指令將數(shù)據(jù)繼續(xù)運(yùn)行或者通過DB總線送到數(shù)據(jù)緩存器中。
基本上,CPU就是這樣去執(zhí)行讀出數(shù)據(jù)、處理數(shù)據(jù)和往內(nèi)存寫數(shù)據(jù)3項基本工作。但在通常情況下,一條指令可以包含按明確順序執(zhí)行的許多操作,CPU的工作就是執(zhí)行這些指令,完成一條指令后,CPU的控制單元又將告訴指令讀取器從內(nèi)存中讀取下一條指令來執(zhí)行。這個過程不斷快速地重復(fù),快速地執(zhí)行一條又一條指令,產(chǎn)生你在顯示器上所看到的結(jié)果。我們很容易想到,在處理這么多指令和數(shù)據(jù)的同時,由于數(shù)據(jù)轉(zhuǎn)移時差和CPU處理時差,肯定會出現(xiàn)混亂處理的情況。為了保證每個操作準(zhǔn)時發(fā)生,CPU需要一個時鐘,時鐘控制著CPU所執(zhí)行的每一個動作。時鐘就像一個節(jié)拍器,它不停地發(fā)出脈沖,決定CPU的步調(diào)和處理時間,這就是我們所熟悉的CPU的標(biāo)稱速度,也稱為主頻。主頻數(shù)值越高,表明CPU的工作速度越快。
一個小小的芯片,卻擁有飛快的計算能力,科技改變生活,這就是科技進(jìn)步的結(jié)果,不知道若干年后,這個由原來的機(jī)型變成現(xiàn)在小小的芯片,以后會變成什么,科技就是如此神奇。