太陽能發(fā)電是利用電池組件將太陽能直接轉變?yōu)殡娔艿难b置。太陽能電池組件(Solar cells)是利用半導體材料的電子學特性實現P-V轉換的固體裝置,在廣大的無電力網地區(qū),該裝置可以方便地實現為用戶照明及生活供電,一些發(fā)達國家還可與區(qū)域電網并網實現互補。目前從民用的角度,在國外技術研究趨于成熟且初具產業(yè)化的是“光伏--建筑(照明)一體化”技術,而國內主要研究生產適用于無電地區(qū)家庭照明用的小型太陽能發(fā)電系統(tǒng)。
1 太陽能發(fā)電原理
太陽能發(fā)電系統(tǒng)主要包括:太陽能電池組件(陣列)、控制器、蓄電池、逆變器、用戶即照明負載等組成。其中,太陽能電池組件和蓄電池為電源系統(tǒng),控制器和逆變器為控制保護系統(tǒng),負載為系統(tǒng)終端。
1.1 太陽能電源系統(tǒng)
太陽能電池與蓄電池組成系統(tǒng)的電源單元,因此蓄電池性能直接影響著系統(tǒng)工作特性。
(1) 電池單元:
由于技術和材料原因,單一電池的發(fā)電量是十分有限的,實用中的太陽能電池是單一電池經串、并聯組成的電池系統(tǒng),稱為電池組件(陣列)。單一電池是一只硅晶體二極管,根據半導體材料的電子學特性,當太陽光照射到由P型和N型兩種不同導電類型的同質半導體材料構成的P-N結上時,在一定的條件下,太陽能輻射被半導體材料吸收,在導帶和價帶中產生非平衡載流子即電子和空穴。同于P-N結勢壘區(qū)存在著較強的內建靜電場,因而能在光照下形成電流密度J,短路電流Isc,開路電壓Uoc。若在內建電場的兩側面引出電極并接上負載,理論上講由P-N結、連接電路和負載形成的回路,就有“光生電流”流過,太陽能電池組件就實現了對負載的功率P輸出。
理論研究表明,太陽能電池組件的峰值功率Pk,由當地的太陽平均輻射強度與末端的用電負荷(需電量)決定。
?。?) 電能儲存單元:
太陽能電池產生的直流電先進入蓄電池儲存,蓄電池的特性影響著系統(tǒng)的工作效率和特性。蓄電池技術是十分成熟的,但其容量要受到末端需電量,日照時間(發(fā)電時間)的影響。因此蓄電池瓦時容量和安時容量由預定的連續(xù)無日照時間決定。
1.2 控制器
控制器的主要功能是使太陽能發(fā)電系統(tǒng)始終處于發(fā)電的最大功率點附近,以獲得最高效率。而充電控制通常采用脈沖寬度調制技術即PWM控制方式,使整個系統(tǒng)始終運行于最大功率點Pm附近區(qū)域。放電控制主要是指當電池缺電、系統(tǒng)故障,如電池開路或接反時切斷開關。目前日立公司研制出了既能跟蹤調控點Pm,又能跟蹤太陽移動參數的“向日葵”式控制器,將固定電池組件的效率提高了50%左右。
1.3 DC-AC逆變器:
逆變器按激勵方式,可分為自激式振蕩逆變和他激式振蕩逆變。主要功能是將蓄電池的直流電逆變成交流電。通過全橋電路,一般采用SPWM處理器經過調制、濾波、升壓等,得到與照明負載頻率f,額定電壓UN等匹配的正弦交流電供系統(tǒng)終端用戶使用。
2 太陽能發(fā)電系統(tǒng)的效率
在太陽能發(fā)電系統(tǒng)中,系統(tǒng)的總效率ηese由電池組件的PV轉換率、控制器效率、蓄電池效率、逆變器效率及負載的效率等組成。但相對于太陽能電池技術來講,要比控制器、逆變器及照明負載等其它單元的技術及生產水平要成熟得多,而且目前系統(tǒng)的轉換率只有17%左右。因此提高電池組件的轉換率,降低單位功率造價是太陽能發(fā)電產業(yè)化的重點和難點。太陽能電池問世以來,晶體硅作為主角材料保持著統(tǒng)治地位。目前對硅電池轉換率的研究,主要圍繞著加大吸能面,如雙面電池,減小反射;運用吸雜技術減小半導體材料的復合;電池超薄型化;改進理論,建立新模型;聚光電池等。幾種太陽能電池的轉換效率見表1。
充分利用太陽能是綠色照明的重要內容之一。而真正意義上的綠色照明至少還包括:照明系統(tǒng)的高效率,高穩(wěn)定性,高效節(jié)能的綠色光源等。
3.1 發(fā)電--建筑照明一體化
目前成功地把太陽能組件和建筑構件加以整合,如太陽能屋面(頂)、墻壁及門窗等,實現了“光伏--建筑照明一體化(BIPV)”。1997年6月,美國宣布了以總統(tǒng)命名的“太陽能百萬屋頂計劃”,在2010年以前為100萬座住宅實施太陽能發(fā)電系統(tǒng)。日本“新陽光計劃”已在2000年以前將光伏建筑組件裝機成本降到170~210日元/W,太陽能電池年產量達10MW,電池成本降到25~30日元/W。1999年5月14日,德國僅用一年兩個月建成了全球首座零排放太陽能電池組件廠,完全用可再生能源提供電力,生產中不排放CO2。工廠的南墻面為約10m高的PV陣列玻璃幕墻,包括屋頂PV組件,整個工廠建筑裝有575m2的太陽能電池組件,僅此可為該建筑提供三分之一以上的電能,其墻面和屋頂PV組件造型、色彩、建筑風格與建筑物的結合,與周圍的自然環(huán)境的整合達到了十分完美的協調。該建筑另有約45kW容量,由以自然狀態(tài)的菜子油作燃料的熱電廠提供,經設計燃燒菜子油時產生的CO2與油菜生長所需的CO2基本平衡,是一座真正意義上的零排放工廠。BIPV還注重建筑裝飾藝術方面的研究,在捷克由德國WIP公司和捷克合作,建成了世界第一面彩色PV幕墻。印度西孟加拉邦為一無電島117家村民安裝了12.5kW的BIPV。國內常州天合鋁板幕墻制造有限公司研制成功一種“太陽房”,把發(fā)電、節(jié)能、環(huán)保、增值融于一房,成功地把光電技術與建筑技術結合起來,稱為太陽能建筑系統(tǒng)(SPBS),SPBS已于2000年9月20日通過專家論證。近日在上海浦東建成了國內首座太陽能--照明一體化的公廁,所有用電由屋頂太陽能電池提供。這將有力地推動太陽能建筑節(jié)能產業(yè)化與市場化的進程。
3.2 綠色照明光源研究
綠色照明系統(tǒng)優(yōu)化設計,要求低能耗下獲得高的光效輸出,并延長燈的使用壽命。因此DC-AC逆變器設計,應獲得合理的燈絲預熱時間和激勵燈管的電壓和電流波形。目前處在研究開發(fā)中的太陽能照明光源激勵方式有四種典型電路:①自激推挽振蕩電路,通過燈絲串聯啟輝器預熱啟動。該光源系統(tǒng)的主要參數是:輸入電壓DC=12V,輸出光效>495Lm/支,燈管額定效率9W,有效壽命3200h,連續(xù)開啟次數>1000次。②自激推挽振蕩(簡單式)電路,該光源系統(tǒng)的主要參數是:輸入電壓DC=12V,燈管功率9W,輸出光效315Lm/支,連續(xù)啟動次數>1500次。③自激單管振蕩電路,燈絲串聯繼電器預熱啟動方式。④自激單管振蕩(簡單式)電路等方式的高效節(jié)能綠色光源。
4 結束語
綠色能源和可持續(xù)發(fā)展問題是本世紀人類面臨的重大課題,開發(fā)新能源,對現有能源的充分合理利用已經得到各國政府的極大重視。太陽能發(fā)電作為一種取之不盡,用之不竭的清潔環(huán)保能源將得到前所未有的發(fā)展。隨著太陽能產業(yè)化進程和技術開發(fā)的深化,它的效率、性價比將得到提高,它在包括BIPV在內的各個領域都將得到廣泛的應用,也將極大地推動中國“綠色照明工程”的快速發(fā)展。