《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 模擬設(shè)計(jì) > 業(yè)界動(dòng)態(tài) > ReRAM即將跨入3D時(shí)代

ReRAM即將跨入3D時(shí)代

2017-07-04
關(guān)鍵詞: ReRAM 3D

  莫斯科物理技術(shù)學(xué)院(MIPT)宣稱成功為ReRAM開發(fā)出新的制程,可望為其實(shí)現(xiàn)適于3D堆疊的薄膜技術(shù)…

  可變電阻式隨機(jī)存取記憶體(ReRAM)是一種可望取代其他各種儲(chǔ)存類型的「通用」記憶體,不僅提供了隨機(jī)存取記憶體(RAM)的速度,又兼具快閃記憶體( flash)的密度與非揮發(fā)性。然而,目前,flash由于搶先進(jìn)入3D時(shí)代而較ReRAM更勝一籌。

  如今,莫斯科物理技術(shù)學(xué)院(Moscow Institute of Physics and Technology;MIPT)的研究人員已成功為ReRAM開發(fā)出新的制程,可望為其實(shí)現(xiàn)適于3D堆疊的薄膜技術(shù)。

  ReRAM的研發(fā)一般采用憶阻器進(jìn)行,其中,在介電層中遷移的氧空缺(oxygen vacancy),將電介質(zhì)的電阻改變?yōu)椤?’與’0’。除了MIPT,還有來自4DS Memory Ltd.、Crossbar Inc.、HP Inc.、Knowm Inc.以及美國德州萊斯大學(xué)(Rice University)的研究人員們也為ReRAM創(chuàng)造了原型。

  針對(duì)3D ReRAM,MIPT科學(xué)家Konstantin Egorov表示,「我們不僅需要在介電層中形成氧空缺,還必須為其進(jìn)行檢測(cè)」。為此,MIPT的研究人員們采用的方法是,在出現(xiàn)氧空缺的介電層中,觀察其能隙中的電子狀態(tài)

  Egorov說:「為了研究在氧化鉭薄膜生長過程中形成的氧空缺,我們使用了一種整合生長PEALD[電漿輔助原子層沉積]和分析XPS(X射線光電子能譜儀)腔室(以真空管相互連接)的實(shí)驗(yàn)叢集。該叢集讓我們能生長和研究沉積層,而不至于破壞真空狀態(tài)?!?/p>

  他強(qiáng)調(diào),「這一點(diǎn)非常重要,因?yàn)橐坏恼婵罩腥〕鰧?shí)驗(yàn)樣本,介電質(zhì)的奈米層就會(huì)在其表面上氧化,導(dǎo)致氧空缺的消失?!?/p>

  01.png

  用于生長和研究薄膜的實(shí)驗(yàn)叢集,可在真空狀態(tài)下實(shí)現(xiàn)3D堆疊(來源:MIPT)

  任何半導(dǎo)體研究實(shí)驗(yàn)室都可以建構(gòu)這種獨(dú)特的原子層沉積(ALD)叢集,其方式是連接PEALD和XPS腔室,然后再添加自動(dòng)操縱器,在腔室之間傳輸晶圓。除了樣本測(cè)試晶圓以外,在大量生產(chǎn)時(shí)并不需要這種叢集。然而,必須建立一條的的組裝線,以補(bǔ)償ALD薄膜緩慢的生長速度。

  如果這些研究取得成功,MIPT聲稱所產(chǎn)生的ReRAM就可以垂直堆疊,成就一種可克服3D flash限制的通用記憶體;目前,3D flash僅限于64層。

  1.jpg

  與沉積氧空缺氧化鉭薄膜有關(guān)的化學(xué)反應(yīng)階段(左),以及透過X射線光電子能譜儀進(jìn)行分析的結(jié)果(右)。(來源:MIPT)

  雖然ALD的生長緩慢,但它能實(shí)現(xiàn)3D結(jié)構(gòu)的共形涂層,取代MIPT和其他研究實(shí)驗(yàn)室迄今所使用的奈米薄膜沉積技術(shù)。其關(guān)鍵的區(qū)別在于ALD依次將基底暴露于前體材料和反應(yīng)物材料,并且取決于二者之間的化學(xué)反應(yīng)以產(chǎn)生主動(dòng)層。

  MIPT的技術(shù)還使用連接至金屬前體的化學(xué)分子配體,以便加速化學(xué)反應(yīng),但在用于元件的主動(dòng)層之前必須先移除這種配體。

  MIPT首席研究員Andrey Markeev說:「沉積缺氧薄膜需要找到正確的反應(yīng)物,才能移除金屬前體中所含的配體,并且控制涂層的氧含量。因此,在經(jīng)過多次實(shí)驗(yàn)后,我們成功地使用含氧的鉭前體,以及電漿激發(fā)的氫反應(yīng)物?!?/p>

  1.png

  MIPT研究人員Dmitry Kuzmichev、Konstantin Egorov、Andrey Markeev和Yury Lebedinskiy,及其背后的原子層沉積機(jī)器。(來源:MIPT)

  接下來,研究人員打算為這一流程進(jìn)行最佳化,并提高ALD的速度,從而為3D ReRAM實(shí)現(xiàn)大量生產(chǎn)。

  MIPT的研究資金是由俄羅斯科學(xué)基金會(huì)(RSF)和MIPT共同提供。這項(xiàng)研究細(xì)節(jié)已發(fā)表于《ACS應(yīng)用材料和介面》(ACS Applied Materials & Interfaces)期刊的「以電漿輔助原子層沉積控制TaOx薄膜的氧空缺,實(shí)現(xiàn)可變電阻式切換的記憶體應(yīng)用」一文中。


本站內(nèi)容除特別聲明的原創(chuàng)文章之外,轉(zhuǎn)載內(nèi)容只為傳遞更多信息,并不代表本網(wǎng)站贊同其觀點(diǎn)。轉(zhuǎn)載的所有的文章、圖片、音/視頻文件等資料的版權(quán)歸版權(quán)所有權(quán)人所有。本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無法一一聯(lián)系確認(rèn)版權(quán)者。如涉及作品內(nèi)容、版權(quán)和其它問題,請(qǐng)及時(shí)通過電子郵件或電話通知我們,以便迅速采取適當(dāng)措施,避免給雙方造成不必要的經(jīng)濟(jì)損失。聯(lián)系電話:010-82306118;郵箱:aet@chinaaet.com。