中圖分類號: TP29;TF325.64 文獻標(biāo)識碼: A DOI:10.16157/j.issn.0258-7998.211847 中文引用格式: 姚立平,劉偉章,吳文明,等. 一種引入濾波的PID控制算法在溫控系統(tǒng)的應(yīng)用[J].電子技術(shù)應(yīng)用,2022,48(6):79-83. 英文引用格式: Yao Liping,Liu Weizhang,Wu Wenming,et al. Application of PID algorithm by using filter in temperature control system[J]. Application of Electronic Technique,2022,48(6):79-83.
Application of PID algorithm by using filter in temperature control system
Yao Liping1,Liu Weizhang2,Wu Wenming1,Jiang Yangyang1,Lei Peng1,Tan Zhongwei1,Wang Kangning1, Li Guixiang1,Xu Fei1,Tang Yuanliang1,Wu Xinshe1,Huang Dequn1,Chen Jun1,Gu Heng1
1.Institute of Medicine and Health,Guangdong Academy of Sciences,Guangzhou 510500,China; 2.College of Mathematics and Informatics,South China Agricultural University,Guangzhou 510642,China
Abstract: In order to make the response of the temperature control system more stable, the third-order discrete filter is introduced in PID control algorithm to filter the input signal, which eliminates the jitter noise and makes the outputs more steady. Besides, a temperature control system based on STM32 micro-controller is designed. The temperature acquisition module is composed of platinum resistance Pt1000 and MAX31865, and the temperature regulation module includes semiconductor cooler TEC and H-bridge logic. The computer software communicates with the cotrol system through USB serial port. The received real-time temperature data is used in PID control algorithm by introducing filter, and the output value is afterwards sent to the computer software to realize a closed-loop temperature control process. The experimental results show that the PID algorithm with filter outperforms PID combined with Bang Bang, differential first PID, step PID and variable integral PID, which improves the ability of anti-interference and has the practical value and application value in engineering temperature control.
Key words : temperature control system;PID control;third-order discrete filter;semiconductor cooler TEC