《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計(jì)應(yīng)用 > 一種基于深度強(qiáng)化學(xué)習(xí)的任務(wù)卸載方法
一種基于深度強(qiáng)化學(xué)習(xí)的任務(wù)卸載方法
2022年電子技術(shù)應(yīng)用第8期
高宇豆1,2,黃祖源1,王海燕1,保 富1,張 航1,李 輝1
1.云南電網(wǎng)有限責(zé)任公司 信息中心,云南 昆明650214;2.西南林業(yè)大學(xué) 大數(shù)據(jù)與智能工程學(xué)院,云南 昆明650224
摘要: 隨著車聯(lián)網(wǎng)的快速發(fā)展,車載應(yīng)用大多是計(jì)算密集和延遲敏感的。車輛是資源受限的設(shè)備,無法為這些應(yīng)用提供所需的計(jì)算和存儲(chǔ)資源。邊緣計(jì)算通過將計(jì)算和存儲(chǔ)資源提供給網(wǎng)絡(luò)邊緣的車輛,有望成為滿足低延遲需求的有效解決方案。這種將任務(wù)卸載到邊緣服務(wù)器的計(jì)算模式不僅可以克服車輛資源的不足,還可以避免將任務(wù)卸載到云可能導(dǎo)致的高延遲。提出了一種基于深度強(qiáng)化學(xué)習(xí)的任務(wù)卸載方法,以最小化任務(wù)的平均完成時(shí)間。首先,把多任務(wù)卸載決策問題規(guī)約為優(yōu)化問題。其次,使用深度強(qiáng)化學(xué)習(xí)對(duì)優(yōu)化問題進(jìn)行求解,以獲得具有最小完成時(shí)間的優(yōu)化卸載策略。最后,實(shí)驗(yàn)結(jié)果表明,該方法的性能優(yōu)于其他基準(zhǔn)方法。
中圖分類號(hào): TP311
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.212133
中文引用格式: 高宇豆,黃祖源,王海燕,等. 一種基于深度強(qiáng)化學(xué)習(xí)的任務(wù)卸載方法[J].電子技術(shù)應(yīng)用,2022,48(8):29-33.
英文引用格式: Gao Yudou,Huang Zuyuan,Wang Haiyan,et al. Task offloading based on deep reinforcement learning for Internet of Vehicles[J]. Application of Electronic Technique,2022,48(8):29-33.
Task offloading based on deep reinforcement learning for Internet of Vehicles
Gao Yudou1,2,Huang Zuyuan1,Wang Haiyan1,Bao Fu1,Zhang Hang1,Li Hui1
1.Center of Information,Yunnan Power Grid Co.,Ltd.,Kunming 650214,China; 2.School of Big Data and Intelligent Engineering,Southwest Forestry University,Kunming 650224,China
Abstract: With the rapid development of Internet of Vehicular, more and more vehicles′ applications are computation-intensive and delay-sensitive. Resource-constrained vehicles cannot provide the required amount of computation and storage resources for these applications. Edge computing(EC) is expected to be a promising solution to meet the demand of low latency by providing computation and storage resources to vehicles at the network edge. This computing paradigm of offloading tasks to the edge servers can not only overcome the restrictions of limited capacity on vehicles,but also avoid the high latency caused by offloading tasks to the remote cloud. In this paper, an efficient task offloading algorithm based on deep reinforcement learning is proposed to minimize the average completion time of applications. Firstly, the multi-task offloading strategy problem is formalized as an optimization problem. Secondly, a deep reinforcement learning is leveraged to obtain an optimized offloading strategies with the lowest completion time. Finally, the experimental results show that the performance of the proposed algorithm is better than other baselines.
Key words : task offloading;Internet of Vehicles;edge computing;deep learning;reinforcement learning

0 引言

    車聯(lián)網(wǎng)(Internet of Vehicle,IoV)是車載網(wǎng)(Vehicular Ad hoc Network,VANET)和物聯(lián)網(wǎng)(Internet of Things,IoT)的深度融合,旨在提高車輛網(wǎng)絡(luò)的性能,降低交通擁堵的風(fēng)險(xiǎn)[1]。在車聯(lián)網(wǎng)中,許多車輛應(yīng)用不僅需要大量的計(jì)算資源,還對(duì)響應(yīng)時(shí)間有嚴(yán)格的要求[2]。但是,車輛是計(jì)算資源和通信能力有限的裝置。對(duì)于這些計(jì)算密集、延遲敏感的應(yīng)用,車輛無法提供足夠的計(jì)算和存儲(chǔ)資源[3]

    為應(yīng)對(duì)車載應(yīng)用所需的大量計(jì)算資源,云計(jì)算被視為一種可行的解決方案。在云計(jì)算環(huán)境下,車輛可以通過無線網(wǎng)絡(luò)將計(jì)算密集型應(yīng)用卸載到云上運(yùn)行。這種端-云協(xié)作的計(jì)算模式很好地?cái)U(kuò)展了車輛的計(jì)算能力[4]。

    然而,對(duì)于計(jì)算密集、延遲敏感的應(yīng)用,端-云協(xié)作的計(jì)算模式是不夠的。因?yàn)?,遠(yuǎn)程任務(wù)卸載帶來的高傳輸延遲會(huì)降低用戶體驗(yàn)[3]。為解決此問題,將車聯(lián)網(wǎng)和邊緣計(jì)算相結(jié)合的車輛邊緣計(jì)算,被認(rèn)為是滿足低延遲的更好解決方案[5]




本文詳細(xì)內(nèi)容請(qǐng)下載:http://theprogrammingfactory.com/resource/share/2000004645。




作者信息:

高宇豆1,2,黃祖源1,王海燕1,保  富1,張  航1,李  輝1

(1.云南電網(wǎng)有限責(zé)任公司 信息中心,云南 昆明650214;2.西南林業(yè)大學(xué) 大數(shù)據(jù)與智能工程學(xué)院,云南 昆明650224)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。