《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 人工智能 > 解決方案 > 訓(xùn)練卷積神經(jīng)網(wǎng)絡(luò):什么是機(jī)器學(xué)習(xí)?——第二部分

訓(xùn)練卷積神經(jīng)網(wǎng)絡(luò):什么是機(jī)器學(xué)習(xí)?——第二部分

2023-04-18
作者:Ole Dreessen,現(xiàn)場應(yīng)用工程師
來源:ADI

  摘要

  本文是系列文章的第二部分,重點(diǎn)介紹卷積神經(jīng)網(wǎng)絡(luò)(CNN)的特性和應(yīng)用。CNN主要用于模式識別和對象分類。在第一部分文章《卷積神經(jīng)網(wǎng)絡(luò)簡介:什么是機(jī)器學(xué)習(xí)?——第一部分》中,我們比較了在微控制器中運(yùn)行經(jīng)典線性規(guī)劃程序與運(yùn)行CNN的區(qū)別,并展示了CNN的優(yōu)勢。我們還探討了CIFAR網(wǎng)絡(luò),該網(wǎng)絡(luò)可以對圖像中的貓、房子或自行車等對象進(jìn)行分類,還可以執(zhí)行簡單的語音識別。本文重點(diǎn)解釋如何訓(xùn)練這些神經(jīng)網(wǎng)絡(luò)以解決實(shí)際問題。

  神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過程

  本系列文章的第一部分討論的CIFAR網(wǎng)絡(luò)由不同層的神經(jīng)元組成。如圖1所示,32 × 32像素的圖像數(shù)據(jù)被呈現(xiàn)給網(wǎng)絡(luò)并通過網(wǎng)絡(luò)層傳遞。CNN處理過程的第一步就是提取待區(qū)分對象的特性和結(jié)構(gòu),這需要借助濾波器矩陣實(shí)現(xiàn)。設(shè)計人員對CIFAR網(wǎng)絡(luò)進(jìn)行建模后,由于最初無法確定這些濾波器矩陣,因此這個階段的網(wǎng)絡(luò)無法檢測模式和對象。

  為此,首先需要確定濾波器矩陣的所有參數(shù),以最大限度地提高檢測對象的精度或最大限度地減少損失函數(shù)。這個過程就稱為神經(jīng)網(wǎng)絡(luò)訓(xùn)練。本系列文章的第一部分所描述的常見應(yīng)用在開發(fā)和測試期間只需對網(wǎng)絡(luò)進(jìn)行一次訓(xùn)練就可以使用,無需再調(diào)整參數(shù)。如果系統(tǒng)對熟悉的對象進(jìn)行分類,則無需額外訓(xùn)練;當(dāng)系統(tǒng)需要對全新的對象進(jìn)行分類時,才需要額外進(jìn)行訓(xùn)練。

  進(jìn)行網(wǎng)絡(luò)訓(xùn)練需要使用訓(xùn)練數(shù)據(jù)集,并使用類似的一組測試數(shù)據(jù)集來測試網(wǎng)絡(luò)的精度。例如CIFAR-10網(wǎng)絡(luò)數(shù)據(jù)集為十個對象類的圖像集合:飛機(jī)、汽車、鳥、貓、鹿、狗、青蛙、馬、輪船和卡車。我們必須在訓(xùn)練CNN之前對這些圖像進(jìn)行命名,這也是人工智能應(yīng)用開發(fā)過程中最為復(fù)雜的部分。本文討論的訓(xùn)練過程采用反向傳播的原理,即向網(wǎng)絡(luò)連續(xù)展示大量圖像,并且每次都同時傳送一個目標(biāo)值。本例的目標(biāo)值為圖像中相關(guān)的對象類。在每次顯示圖像時,濾波器矩陣都會被優(yōu)化,這樣對象類的目標(biāo)值就會和實(shí)際值相匹配。完成此過程的網(wǎng)絡(luò)就能夠檢測出訓(xùn)練期間從未看到過的圖像中的對象。

40.JPG

  圖1.CIFAR CNN架構(gòu)。

41.JPG

  圖2.由前向傳播和反向傳播組成的訓(xùn)練循環(huán)。

  過擬合和欠擬合

  在神經(jīng)網(wǎng)絡(luò)的建模過程中經(jīng)常會出現(xiàn)的問題是:神經(jīng)網(wǎng)絡(luò)應(yīng)該有多少層,或者是神經(jīng)網(wǎng)絡(luò)的濾波器矩陣應(yīng)該有多大。回答這個問題并非易事,因此討論網(wǎng)絡(luò)的過擬合和欠擬合至關(guān)重要。過擬合由模型過于復(fù)雜以及參數(shù)過多而導(dǎo)致。我們可以通過比較訓(xùn)練數(shù)據(jù)集和測試數(shù)據(jù)集的損失來確定預(yù)測模型與訓(xùn)練數(shù)據(jù)集的擬合程度。如果訓(xùn)練期間損失較低并且在向網(wǎng)絡(luò)呈現(xiàn)從未顯示過的測試數(shù)據(jù)時損失過度增加,這就強(qiáng)烈表明網(wǎng)絡(luò)已經(jīng)記住了訓(xùn)練數(shù)據(jù)而不是在實(shí)施模式識別。此類情況主要發(fā)生在網(wǎng)絡(luò)的參數(shù)存儲空間過大或者網(wǎng)絡(luò)的卷積層過多的時候。這種情況下應(yīng)當(dāng)縮小網(wǎng)絡(luò)規(guī)模。

  損失函數(shù)和訓(xùn)練算法

  學(xué)習(xí)分兩個步驟進(jìn)行。第一步,向網(wǎng)絡(luò)展示圖像,然后由神經(jīng)元網(wǎng)絡(luò)處理這些圖像生成一個輸出矢量。輸出矢量的最大值表示檢測到的對象類,例如示例中的“狗”,該值不一定是正確的。這一步稱為前向傳播。

  目標(biāo)值與輸出時產(chǎn)生的實(shí)際值之間的差值稱為損失,相關(guān)函數(shù)則稱為損失函數(shù)。網(wǎng)絡(luò)的所有要素和參數(shù)均包含在損失函數(shù)中。神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)過程旨在以最小化損失函數(shù)的方式定義這些參數(shù)。這種最小化可通過反向傳播的過程實(shí)現(xiàn)。在反向傳播的過程中,輸出產(chǎn)生的偏置(損失 = 目標(biāo)值-實(shí)際值)通過網(wǎng)絡(luò)的各層反饋,直至達(dá)到網(wǎng)絡(luò)的起始層。

  因此,前向傳播和反向傳播在訓(xùn)練過程中產(chǎn)生了一個可以逐步確定濾波器矩陣參數(shù)的循環(huán)。這種循環(huán)過程會不斷重復(fù),直至損失值降至一定程度以下。

  優(yōu)化算法、梯度和梯度下降法

  為說明訓(xùn)練過程,圖3顯示了一個包含x和y兩個參數(shù)的損失函數(shù)的示例,這里z軸對應(yīng)于損失。如果我們仔細(xì)查看該損失函數(shù)的三維函數(shù)圖,我們就會發(fā)現(xiàn)這個函數(shù)有一個全局最小值和一個局部最小值。

  目前,有大量數(shù)值優(yōu)化算法可用于確定權(quán)重和偏置。其中,梯度下降法最為簡單。梯度下降法的理念是使用梯度算子在逐步訓(xùn)練的過程中找到一條通向全局最小值的路徑,該路徑的起點(diǎn)從損失函數(shù)中隨機(jī)選擇。梯度算子是一個數(shù)學(xué)運(yùn)算符,它會在損失函數(shù)的每個點(diǎn)生成一個梯度矢量。該矢量的方向指向函數(shù)值變化最大的方向,幅度對應(yīng)于函數(shù)值的變化程度。在圖3的函數(shù)中,右下角(紅色箭頭處)由于表面平坦,因此梯度矢量的幅度較小。而接近峰值時的情況則完全不同。此處矢量(綠色箭頭)的方向急劇向下,并且由于此處高低差明顯,梯度矢量的幅度也較大。

42.JPG

  圖3.使用梯度下降法確定到最小值的不同路徑。

  因此我們可以利用梯度下降法從任意選定的起點(diǎn)開始以迭代的方式尋找下降至山谷的最陡峭路徑。這意味著優(yōu)化算法會在起點(diǎn)計算梯度,并沿最陡峭的下降方向前進(jìn)一小步。之后算法會重新計算該點(diǎn)的梯度,繼續(xù)尋找創(chuàng)建一條從起點(diǎn)到山谷的路徑。這種方法的問題在于起點(diǎn)并非是提前定義的,而是隨機(jī)選擇的。在我們的三維地圖中,某些細(xì)心的讀者會將起點(diǎn)置于函數(shù)圖左側(cè)的某個位置,以確保路徑的終點(diǎn)為全局最小值(如藍(lán)色路徑所示)。其他兩個路徑(黃色和橙色)要么非常長,要么終點(diǎn)位于局部最小值。但是,算法必須對成千上萬個參數(shù)進(jìn)行優(yōu)化,顯然起點(diǎn)的選擇不可能每次都碰巧正確。在具體實(shí)踐中,這種方法用處不大。因?yàn)樗x擇的起點(diǎn)可能會導(dǎo)致路徑(即訓(xùn)練時間)較長,或者目標(biāo)點(diǎn)并不位于全局最小值,導(dǎo)致網(wǎng)絡(luò)的精度下降。

  因此,為避免上述問題,過去幾年已開發(fā)出大量可作為替代的優(yōu)化算法。一些替代的方法包括隨機(jī)梯度下降法、動量法、AdaGrad方法、RMSProp方法、Adam方法等。鑒于每種算法都有其特定的優(yōu)缺點(diǎn),實(shí)踐中具體使用的算法將由網(wǎng)絡(luò)開發(fā)人員決定。

  訓(xùn)練數(shù)據(jù)

  在訓(xùn)練過程中,我們會向網(wǎng)絡(luò)提供標(biāo)有正確對象類的圖像,如汽車、輪船等。本例使用了已有的CIFAR-10數(shù)據(jù)集。當(dāng)然,在具體實(shí)踐中,人工智能可能會用于識別貓、狗和汽車之外的領(lǐng)域。這可能需要開發(fā)新應(yīng)用,例如檢測制造過程中螺釘?shù)馁|(zhì)量必須使用能夠區(qū)分好壞螺釘?shù)挠?xùn)練數(shù)據(jù)對網(wǎng)絡(luò)進(jìn)行訓(xùn)練。創(chuàng)建此類數(shù)據(jù)集極其耗時費(fèi)力,往往是開發(fā)人工智能應(yīng)用過程中成本最高的一步。編譯完成的數(shù)據(jù)集分為訓(xùn)練數(shù)據(jù)集和測試數(shù)據(jù)集。訓(xùn)練數(shù)據(jù)集用于訓(xùn)練,而測試數(shù)據(jù)則用于在開發(fā)過程的最后檢查訓(xùn)練好的網(wǎng)絡(luò)的功能。

  結(jié)論

  本系列文章的第一部分《人工智能簡介:什么是機(jī)器學(xué)習(xí)?——第一部分》介紹了神經(jīng)網(wǎng)絡(luò)并對其設(shè)計和功能進(jìn)行了詳細(xì)探討。本文則定義了函數(shù)所需的所有權(quán)重和偏置,因此現(xiàn)在可以假定網(wǎng)絡(luò)能夠正常運(yùn)行。在后續(xù)第三部分的文章中,我們將通過硬件運(yùn)行神經(jīng)網(wǎng)絡(luò)以測試其識別貓的能力。這里我們將使用ADI公司開發(fā)的帶硬件CNN加速器的MAX78000人工智能微控制器來進(jìn)行演示。



更多精彩內(nèi)容歡迎點(diǎn)擊==>>電子技術(shù)應(yīng)用-AET<< 

mmexport1621241704608.jpg

本站內(nèi)容除特別聲明的原創(chuàng)文章之外,轉(zhuǎn)載內(nèi)容只為傳遞更多信息,并不代表本網(wǎng)站贊同其觀點(diǎn)。轉(zhuǎn)載的所有的文章、圖片、音/視頻文件等資料的版權(quán)歸版權(quán)所有權(quán)人所有。本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無法一一聯(lián)系確認(rèn)版權(quán)者。如涉及作品內(nèi)容、版權(quán)和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當(dāng)措施,避免給雙方造成不必要的經(jīng)濟(jì)損失。聯(lián)系電話:010-82306118;郵箱:aet@chinaaet.com。