《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 模擬設(shè)計(jì) > 設(shè)計(jì)應(yīng)用 > 基于卷積神經(jīng)網(wǎng)絡(luò)的紅外監(jiān)測系統(tǒng)設(shè)計(jì)
基于卷積神經(jīng)網(wǎng)絡(luò)的紅外監(jiān)測系統(tǒng)設(shè)計(jì)
2023年電子技術(shù)應(yīng)用第4期
焦翔1,趙文策2,蒯亮1,周淦1,白永強(qiáng)2,任彥程2
(1.中國電子信息產(chǎn)業(yè)集團(tuán)有限公司第六研究所,北京 102209;2.太原衛(wèi)星發(fā)射中心,山西 太原 030027)
摘要: 為了部隊(duì)后勤物資有效、方便、統(tǒng)一管理,研究設(shè)計(jì)了一種用于監(jiān)測物品在位狀態(tài)的告警監(jiān)測系統(tǒng)。該系統(tǒng)利用樹莓派主板采集紅外傳感器檢測物品在位狀態(tài)的電平信號以及攝像頭拍攝物品的圖像數(shù)據(jù),并將其轉(zhuǎn)化為通用數(shù)據(jù)幀,通過指定源組播的方式發(fā)送至數(shù)據(jù)處理模塊,最后使用基于卷積神經(jīng)網(wǎng)絡(luò)的圖像識別算法判斷物品的正確性,并在監(jiān)測模塊界面上實(shí)時(shí)顯示其狀態(tài)。經(jīng)驗(yàn)證,該系統(tǒng)可以保證數(shù)據(jù)采集的實(shí)時(shí)性以及識別物品的準(zhǔn)確性,實(shí)用性強(qiáng)。
中圖分類號:TN215;P315.69
文獻(xiàn)標(biāo)志碼:A
DOI: 10.16157/j.issn.0258-7998.222979
中文引用格式: 焦翔,趙文策,蒯亮,等. 基于卷積神經(jīng)網(wǎng)絡(luò)的紅外監(jiān)測系統(tǒng)設(shè)計(jì)[J]. 電子技術(shù)應(yīng)用,2023,49(4):83-87.
英文引用格式: Jiao Xiang,Zhao Wence,Kuai Liang,et al. Design of infrared monitoring system based on convolutional neural network[J]. Application of Electronic Technique,2023,49(4):83-87.
Design of infrared monitoring system based on convolutional neural network
Jiao Xiang1,Zhao Wence2,Kuai Liang1,Zhou Gan1,Bai Yongqiang2,Ren Yancheng2
(1.The Sixth Research Institute of China Electronics Corporation, Beijing 102209, China; 2.Taiyuan Satellite Launch Center, Taiyuan 030027, China)
Abstract: For the effective, convenient and unified management of materials about military logistics, this paper studies and designs a monitoring system for monitoring the presence of items. The system uses the motherboard of Raspberry Pi to collect the level signal of the infrared sensor about the presence of the items and the images taken by camera of the items. Then it converts the data into the general data frame, and sends the frame to the data processing module through the source-specific multicast. Finally, the image recognition based on the convolutional neural network is used to judge the correctness of the item, and display its status in real time through the monitoring interface. It has been verified that the system can ensure the real time of data acquisition and the accuracy of identifying items. It has strong practicability.
Key words : Raspberry Pi;infrared detection;condition monitoring;image recognition;convolutional neural network

0 引言

隨著信息技術(shù)的不斷發(fā)展,智能化的概念開始逐漸滲透到各行各業(yè)以及我們生活中的方方面面。其中,在部隊(duì)后勤方面,智能化的物資管理能夠有效地提高后勤保障工作,減小管理人員的管理成本,因此建設(shè)一套能實(shí)現(xiàn)實(shí)時(shí)化、智能化、可視化的監(jiān)測系統(tǒng)具有重要的理論意義和實(shí)際應(yīng)用價(jià)值。鑒于此,本文以部隊(duì)后勤物資管理為背景,提出了一種基于卷積神經(jīng)網(wǎng)絡(luò)的紅外監(jiān)測系統(tǒng),實(shí)時(shí)監(jiān)測物品狀態(tài)。該系統(tǒng)以樹莓派作為主控制系統(tǒng)集成了多種元器件,并將采集的數(shù)據(jù)進(jìn)行數(shù)據(jù)處理,最后將結(jié)果可視化,同時(shí)具有查詢、預(yù)警等功能。該軟件系統(tǒng)運(yùn)行在國產(chǎn)銀河麒麟操作系統(tǒng)、國產(chǎn)飛騰芯片處理器上,滿足了核心領(lǐng)域高信息安全、高自主可信的服務(wù)需求。由于YOLOv5網(wǎng)絡(luò)模型檢測精度較高、速度快,因此該系統(tǒng)采用它進(jìn)行目標(biāo)檢測。



本文詳細(xì)內(nèi)容請下載:http://theprogrammingfactory.com/resource/share/2000005288




作者信息:

焦翔1,趙文策2,蒯亮1,周淦1,白永強(qiáng)2,任彥程2

(1.中國電子信息產(chǎn)業(yè)集團(tuán)有限公司第六研究所,北京 102209;2.太原衛(wèi)星發(fā)射中心,山西 太原 030027)



微信圖片_20210517164139.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。