基于Transformer和語(yǔ)義增強(qiáng)的人群計(jì)數(shù)算法
網(wǎng)絡(luò)安全與數(shù)據(jù)治理 2023年第5期
何晴,楊倩倩,彭思凡,殷保群
(中國(guó)科學(xué)技術(shù)大學(xué)信息科學(xué)技術(shù)學(xué)院,安徽合肥230027)
摘要: 針對(duì)人群圖像中的尺度變化問(wèn)題,提出了基于Transformer和語(yǔ)義增強(qiáng)的人群計(jì)數(shù)算法。為了能有效應(yīng)對(duì)尺度變化問(wèn)題,首先引入Transformer作為主干網(wǎng)對(duì)全局上下文進(jìn)行建模來(lái)獲得全局感受野。然后由上至下依次融合主干網(wǎng)相鄰層次的特征圖,在融合過(guò)程中強(qiáng)化多個(gè)層次特征圖的語(yǔ)義信息。接著對(duì)多層次特征圖進(jìn)行動(dòng)態(tài)特征選擇,選擇出適合密度圖生成的特征。最后,通過(guò)注意力圖來(lái)調(diào)整密度圖抵抗背景干擾,以此來(lái)生成高質(zhì)量的人群密度估計(jì)圖。在ShanghaiTech、UCFQNRF和JHUCROWD++三個(gè)數(shù)據(jù)集上進(jìn)行了大量的實(shí)驗(yàn)來(lái)對(duì)算法的有效性進(jìn)行驗(yàn)證,實(shí)驗(yàn)結(jié)果表明所提算法能有效提高模型的準(zhǔn)確性和魯棒性。
中圖分類號(hào):TP391.1
文獻(xiàn)標(biāo)識(shí)碼:A
DOI:10.19358/j.issn.2097-1788.2023.05.009
引用格式:何晴,楊倩倩,彭思凡,等.基于Transformer和語(yǔ)義增強(qiáng)的人群計(jì)數(shù)算法[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2023,42(5):50-58.
文獻(xiàn)標(biāo)識(shí)碼:A
DOI:10.19358/j.issn.2097-1788.2023.05.009
引用格式:何晴,楊倩倩,彭思凡,等.基于Transformer和語(yǔ)義增強(qiáng)的人群計(jì)數(shù)算法[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2023,42(5):50-58.
Transformer and semantic enhancement for crowd counting
He Qing,Yang Qianqian,Peng Sifan,Yin Baoqun
(School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China)
Abstract: Aiming at the problem of scale variation in crowd images, this paper proposes a crowd counting algorithm based on Transformer and semantic enhancement. Firstly, Transformer is introduced as the backbone of the network. Because it can model the global context and obtain the global receptive field, which can effectively deal with the scale variation. Then, the feature maps of adjacent levels of the backbone network are fused from top to bottom in turn, and the semantic information of multiple levels of feature maps is strengthened in the fusion process. Afterwards the dynamic feature selection of multilevel feature maps is carried out, and the features suitable for density map generation are selected. Finally, the density map is adjusted to resist background interference by attention masks, so as to generate highquality crowd density estimation map. In this paper, a large number of experiments are carried out on ShanghaiTech, UCF_QNRF and JHUCROWD++ datasets to verify the effectiveness of the algorithm. The experimental results show that the proposed algorithm can effectively improve the accuracy and robustness of the model.
Key words : crowd counting; Transformer; semantic enhancement; feature selection
0 引言
人群計(jì)數(shù)在視頻監(jiān)控、人群分析和公共安全領(lǐng)域發(fā)揮著重要作用,考慮到大規(guī)模的人群聚集事件的頻繁發(fā)生,對(duì)擁擠場(chǎng)景的人群分析十分必要。然而現(xiàn)階段人群計(jì)數(shù)的應(yīng)用還受到很大的限制,在諸多限制中,圖像中人頭尺寸不一致的問(wèn)題尤其受到大多數(shù)研究者的關(guān)注。由于攝像頭高度和角度受到限制,所拍攝的圖像存在透視失真,從而導(dǎo)致了圖像中目標(biāo)尺度差異較大。如圖1所示,離攝像頭遠(yuǎn)處的目標(biāo)尺度較大,近處的目標(biāo)尺度較小。為了解決尺度變化問(wèn)題,本文提出基于Transformer和語(yǔ)義增強(qiáng)的人群計(jì)數(shù)算法,利用Transformer獲取全局感受野,由上至下依次融合相鄰層次特征并對(duì)語(yǔ)義信息進(jìn)行增強(qiáng),動(dòng)態(tài)選擇適合密度圖生成的特征,從而生成高質(zhì)量的人群密度估圖。
本文詳細(xì)內(nèi)容請(qǐng)下載:http://theprogrammingfactory.com/resource/share/2000005334
作者信息:
何晴,楊倩倩,彭思凡,殷保群
(中國(guó)科學(xué)技術(shù)大學(xué)信息科學(xué)技術(shù)學(xué)院,安徽合肥230027)
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。