《電子技術應用》
您所在的位置:首頁 > 微波|射頻 > 解決方案 > 5G毫米波天線設計需要權衡取舍

5G毫米波天線設計需要權衡取舍

2023-06-15
作者:Marcel Geurts and Johan Janssen
來源:恩智浦
關鍵詞: 恩智浦 PCB 天線 5G

35.JPG

  24GHz以上的5G新空口FR2(NR FR2)頻譜被稱為毫米波(mmWave),提供極高的吞吐速度,能夠支持大量的設備,但此范圍內的信號與大多數(shù)移動網絡開發(fā)人員所使用的6 GHz及以下頻段的信號截然不同。

  為5G毫米波構建有源相控陣天線需要非常緊湊的設計。天線單元需要以半波長(即5mm)的間距放置。同時,每個天線單元需要有一個連接到兩個極化饋電器的發(fā)射/接收通道。公司網絡也包括在內,整個設計必須在小面積區(qū)域內提供高熱流。即便對于經驗豐富的工程師來說,創(chuàng)建滿足所有要求的層疊式PCB也是一個挑戰(zhàn)。

  運行參數(shù)的微小變化可能導致天線無法按預期工作,需要重新設計、重新制造和再次測試各組件、子系統(tǒng)甚至整個系統(tǒng),導致開發(fā)周期更長、開發(fā)成本更高。此外,還需要考慮物理條件,因為生產、裝配和日常操作條件可能會使精密電子元件承受過高的壓力,以及具有破壞性的熱量和溫度波動。除了這些挑戰(zhàn)之外,大多數(shù)設計團隊都在努力滿足緊迫的期限和嚴格的交付日期,對于5G毫米波技術的初學者來說,學習曲線特別陡峭。

  我們的團隊剛剛完成了64單元天線演示器的開發(fā),這個演示器在5G毫米波的24GHz到28GHz頻率上工作,整個團隊在開發(fā)過程中親歷了上述艱辛。

  作為一家半導體公司,我們通過這類項目制作系統(tǒng)級設計,為客戶提供幫助。在系統(tǒng)層面進行設計,我們獲得了內部專業(yè)知識,可指導客戶解決各種設計難題,更重要的是,我們創(chuàng)建量產型解決方案,使我們的客戶能夠跳過學習曲線中的大部分階段。換言之,我們經歷了整個開發(fā)流程,進行權衡、評估各種選擇并改進設計,而我們的客戶不必重復這些工作。

  我們的故事

  下圖展示了恩智浦團隊所創(chuàng)建產品的部件分解圖。

36.JPG

  5G毫米波天線演示器

  20多位專題專家團隊在恩智浦及生產、設計天線的重要合作伙伴公司完成了天線設計、校準,以及性能測試,他們充分發(fā)揮了各自在波束圖驗證、熱力學、AC/DC和DC/DC轉換器設計、LVDS控制、FPGA設計和PCB制造等領域的專業(yè)知識。

  核心組件

  汽大多數(shù)5G毫米波天線設計的核心是波束賦形IC,它把高頻信號聚焦到特定的接收機,使連接更直接、更快速、質量更高和更可靠。多個波束賦形IC連接和排列成規(guī)則結構,稱為相控陣列。相控陣列將信號進行組合,產生單個天線無法實現(xiàn)的輻射模式。波束賦形用于改變每個天線單元的信號的幅度和相位,便于容易聚焦和操縱。

  恩智浦64單元天線演示器設計幫助開發(fā)人員節(jié)省時間和精力。

  好的波束賦形器IC有助于優(yōu)化每個無線元件的整體性能、功耗和成本,因此在考慮設計選項時應予以優(yōu)先考慮。在本例中,我們使用恩智浦MMW9014波束賦形IC,這是一款高度集成的5G 4通道雙極化模擬波束賦形IC,采用非常小巧的FO-WLPBGA封裝(6.5 mm x 6.1 mm x 0.56 mm),有182個凸點。

  選擇了波束賦形器后,下一步構建天線面板PCB和外殼。事實證明這個步驟特別重要,也特別棘手。

37.JPG

  天線面板PCB和外殼的視圖

  防止翹曲

  我們面臨的一個最大挑戰(zhàn)是需要在天線翹曲與熱管理之間進行權衡。我們需要獲得合適的電磁(EM)性能,創(chuàng)建可在目標頻率下可靠工作的天線,同時確保穩(wěn)定的熱環(huán)境,從而保護電子器件不出現(xiàn)故障并防止天線PCB翹曲。

  我們的目標是翹曲度低于0.22%,但事實上我們超越了這個目標,測量結果在0.132%到0.175%之間。能夠獲得非常低的翹曲度是因為做出了若干重要的設計決策。完成天線單元設計后,我們將這種結構映射到我們對天線、控制、企業(yè)網絡、電源線和地面結構的要求中。圍繞中央內核對稱地創(chuàng)建12層PCB。任何翹曲都是源自PCB的金屬和介電元件的不同熱性能而造成的累積應力。

  如圖所示,PCB的下6層創(chuàng)建天線,上6層管理饋電、電源以及模擬和數(shù)字分布。

38.JPG

  天線面板的橫截面,包括材料牌號、層分配、已實現(xiàn)板的尺寸和照片

  PCB層疊在z軸上對稱。由于銅會干擾天線元件的運行,因此我們將系統(tǒng)的所有銅分布在PCB的側邊,遠離天線陣列。

  為了進一步提高天線的可靠性,并且使PCB對由于熱循環(huán)引起的故障具有更強的恢復能力,我們將層疊過孔的數(shù)量限制為3個,如果需要更多的過孔,則使用交錯。交錯過孔可抵消銅和電介質等PCB材料的不同熱膨脹系數(shù)帶來的損傷效應。制造階段會出現(xiàn)高溫,尤其是進行焊接時,這種方法即使在焊接后也能減少翹曲。

  為了防止散熱器損壞小巧的MMW9014K封裝,我們將夾持力保持在每球小于1g,防止焊球在天線工作壽命期間的蠕變導致短路。

  為了增加對PCB的保護,并保持它的形狀,我們將PCB放置在可調節(jié)的框架中。該可調式框架一側采用尼龍制造,目的是減少天線干擾,另一側采用金屬制造,這樣能夠安裝PCB,而不會增加施加在精密電路上的物理應力。

39.JPG

  面板演示器套件

  保持涼爽

  為了保證IC的壽命,需要管理熱流。這是盡量減少翹曲的另一個手段,因為這意味著可以使用非常薄的熱界面材料(TIM)。TIM通常是熱鏈中熱阻最高的項目,因此目標是使其盡可能薄。為了簡化裝配,TIM被整體地用于散熱器硅中介層,該散熱器硅中介層是演示器機械設計的基礎。演示器的物理外殼可拆卸,便于管理內部連接器。在空間受限的小空間天線測量室中工作時,這一點非常有優(yōu)勢。

  該毫米波拆分網絡被作為企業(yè)分束器。為了改善分束器和天線饋源之間的隔離,我們把傳輸線放在內層上。結果表明,在波束賦形增益為30dB的情況下,仍具有無振蕩特性。我們還設計了傳輸線與TIM和散熱器配合使用,以滿足設計的散熱要求。天線的掃描范圍為±45°。

  最后,我們的Vcc分布決策簡化了設計,提高了效率。我們使用19V電源生成所需的2.8V工作電壓,可通過標準AC/DC轉換器使用單個電源,并減少天線測量室所需的布線數(shù)量。所有電源線的當前路徑都將前轉路徑和返回路徑都置于指定位置。

  準備運行

  我們利用團隊的綜合專業(yè)知識,并借助恩智浦在天線陣列和批量生產方面的長期成功經驗,創(chuàng)建了一款獨立解決方案,供任何構建5G毫米波天線陣列的人員使用。

  面板演示器隨附在套件中,該套件包含分析天線參數(shù)所需的一切,包括陣列中每個天線的溫度。該演示器經過天線模式完全校準、波束圖驗證并遵循批量制造準則,因此設計團隊可快速從原型制作進入大規(guī)模制造階段,系統(tǒng)采用嚴格的走線寬度、盲過孔和層厚度等設計規(guī)則。

  與Matlab配套使用的單獨的評估工具包隨附了一個AC/DC轉換器和。dll格式的示例代碼,提供了額外的分析選項。該演示器還具有FPGA接口板,可將PC的USB連接轉換成天線陣列使用的LVDS主信號和控制信號。

40.JPG

  可調節(jié)框架保護精密電路并幫助盡量減少天線干擾

  感謝為項目作出貢獻的整個團隊:

  • 恩智浦:

  √ Mustafa Acar

  √ Konstantinos Giannakidis

  √ Harm Voss

  √ Nick Spence

  √ Arthur van de Kerkhof

  √ Ashutosh Dwivedi

  √ Dick van de Broeke

  √ Evert van Capelleveen

  √ Jan Willem Bergman

  √ Jeroen Zaal

  √ Arjan van den Berg

  √ John Janssen

  √ Rajesh Mandamparambil

  √ Ramon Groot Wesseldijk

  √ Paul Mattheijssen

  • TNO

  √ Roland Bolt

  √ Erwin Suijker

  √ Stefania Monni

  • Philips

  √ Yizhe Yin

  √ Arthur van Es

  √ Ruud Olieslagers

  √ Nico van Dijk

  √ Peter Snoeijen

  √ Randy Kesselmans

  √ Bas Driessen

  √ Erik van Weert

  • LV Electronics

  √ Carlos Verdonck

  • TU/e & AntenneX

  √ Teun van den Biggelaar



更多精彩內容歡迎點擊==>>電子技術應用-AET<<

mmexport1621241704608.jpg

本站內容除特別聲明的原創(chuàng)文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創(chuàng)文章及圖片等內容無法一一聯(lián)系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯(lián)系電話:010-82306118;郵箱:aet@chinaaet.com。