《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計應(yīng)用 > 基于神經(jīng)網(wǎng)絡(luò)的大型無人值守風電場網(wǎng)絡(luò)安全監(jiān)控技術(shù)研究
基于神經(jīng)網(wǎng)絡(luò)的大型無人值守風電場網(wǎng)絡(luò)安全監(jiān)控技術(shù)研究
網(wǎng)絡(luò)安全與數(shù)據(jù)治理
邱情芳1,曹學銘1,王丹丹1,蔡繼峰1,李新華1,周成勝2
1.北京鑒衡認證中心有限公司;2.中國信息通信研究院
摘要: 大型無人值守風電場作為清潔能源的重要組成部分,其網(wǎng)絡(luò)安全不僅關(guān)系到風電場的穩(wěn)定運行,還直接影響到整個電力系統(tǒng)的安全。研究基于神經(jīng)網(wǎng)絡(luò)的大型無人值守風電場網(wǎng)絡(luò)安全監(jiān)控技術(shù),以提高風電場的網(wǎng)絡(luò)安全防護能力。首先分析了大型無人值守風電場的網(wǎng)絡(luò)安全威脅,包括外部攻擊、內(nèi)部泄露、設(shè)備故障等。針對這些威脅,設(shè)計了基于神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)安全監(jiān)控模型,該模型能夠?qū)崟r監(jiān)測風電場的網(wǎng)絡(luò)流量、設(shè)備狀態(tài)等關(guān)鍵信息,并通過深度學習算法對異常行為進行識別和預警。為了驗證模型的有效性,在模擬風電場環(huán)境中進行了實驗,結(jié)果表明,該模型能夠準確識別出多種網(wǎng)絡(luò)安全威脅,并提前發(fā)出預警,為風電場的網(wǎng)絡(luò)安全防護提供了有力支持。
中圖分類號:TP391.9文獻標識碼:ADOI:10.19358/j.issn.2097-1788.2025.02.002
引用格式:邱情芳,曹學銘,王丹丹,等. 基于神經(jīng)網(wǎng)絡(luò)的大型無人值守風電場網(wǎng)絡(luò)安全監(jiān)控技術(shù)研究[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2025,44(2):10-16,31.
Research on network security monitoring technology for large unmanned wind farm based on neural network
Qiu Qingfang1,Cao Xueming1,Wang Dandan1,Cai Jifeng1,Li Xinhua1,Zhou Chengsheng2
1.China General Certification Center; 2.China Academy of Information and Communications Technology
Abstract: Large-scale unmanned wind farm is an important component of clean energy,and its network security not only relates to the stable operation of wind farms,but also directly affects the security of the entire power system.Therefore,this study aims to explore the network security monitoring technology for large-scale unmanned wind farms based on neural networks,in order to improve the network security protection capability of wind farms. This study first analyzed the network security threats of large unmanned wind farms,including external attacks,internal leaks,equipment failures etc. In response to these threats,this study designed a neural network-based network security monitoring model that can monitor key information such as network traffic and equipment status of wind farms in real time,and identify and warn of abnormal behavior through deep learning algorithms. In order to verify the effectiveness of the model,experiments were conducted in a simulated wind farm environment. The results showed that the model can accurately identify various network security threats and issue early warnings,providing strong support for the network security protection of wind farms.
Key words : wind farm; network security; security monitoring; neural network

引言

 隨著全球能源結(jié)構(gòu)的轉(zhuǎn)型和可再生能源的快速發(fā)展,大型無人值守風電場作為清潔能源的重要組成部分,其建設(shè)規(guī)模和數(shù)量不斷增加。然而,由于風電場地理位置偏遠、設(shè)備眾多、通信復雜等特點,其網(wǎng)絡(luò)安全問題日益凸顯。風電場作為電力系統(tǒng)的重要節(jié)點,其網(wǎng)絡(luò)安全不僅關(guān)系到風電場的穩(wěn)定運行,還直接影響到整個電力系統(tǒng)的安全。因此,加強風電場的網(wǎng)絡(luò)安全監(jiān)控具有重要意義。

傳統(tǒng)的網(wǎng)絡(luò)安全監(jiān)控方法主要依賴于防火墻、入侵檢測系統(tǒng)等技術(shù)手段,但這些方法在面對新型網(wǎng)絡(luò)攻擊時往往存在漏報、誤報等問題。此外,由于風電場設(shè)備眾多、通信復雜,傳統(tǒng)的監(jiān)控方法難以實現(xiàn)對所有設(shè)備的全面監(jiān)控和異常行為的及時預警。因此,探索新的網(wǎng)絡(luò)安全監(jiān)控技術(shù),提高風電場的網(wǎng)絡(luò)安全防護能力,是當前亟待解決的問題。

此外,風電場網(wǎng)絡(luò)安全監(jiān)控還面臨著一些特殊的問題和挑戰(zhàn)。例如,風電場設(shè)備眾多、通信復雜,監(jiān)控數(shù)據(jù)量大且異構(gòu)性強;風電場地理位置偏遠,通信延遲和丟包等問題時有發(fā)生;風電場網(wǎng)絡(luò)安全威脅多樣且隱蔽性強,難以通過單一技術(shù)手段進行全面防護。因此,需要探索新的網(wǎng)絡(luò)安全監(jiān)控技術(shù),以適應(yīng)風電場網(wǎng)絡(luò)安全監(jiān)控的特殊需求。

針對以上問題和挑戰(zhàn),本研究旨在探索基于神經(jīng)網(wǎng)絡(luò)的大型無人值守風電場網(wǎng)絡(luò)安全監(jiān)控技術(shù)。具體研究目標包括:設(shè)計基于神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)安全監(jiān)控模型,實現(xiàn)對風電場網(wǎng)絡(luò)流量、設(shè)備狀態(tài)等關(guān)鍵信息的實時監(jiān)測和異常行為的識別預警;通過實驗驗證模型的有效性,并探討神經(jīng)網(wǎng)絡(luò)在網(wǎng)絡(luò)安全監(jiān)控中的應(yīng)用優(yōu)勢和局限性;提出改進建議和優(yōu)化措施,進一步提高神經(jīng)網(wǎng)絡(luò)在網(wǎng)絡(luò)安全監(jiān)控中的應(yīng)用效果。


本文詳細內(nèi)容請下載:

http://theprogrammingfactory.com/resource/share/2000006337


作者信息:

邱情芳1,曹學銘1,王丹丹1,蔡繼峰1,李新華1,周成勝2

(1.北京鑒衡認證中心有限公司,北京100013;

2.中國信息通信研究院,北京100083)


Magazine.Subscription.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。