1、引言
近些年來,以太網(wǎng)" title="以太網(wǎng)">以太網(wǎng)通信" title="通信">通信速率的提高及交換式以太網(wǎng)技術(shù)的出現(xiàn),使得以太網(wǎng)的通信性能大為改善,原來阻礙以太網(wǎng)進入工業(yè)控制領(lǐng)域的不確定性等問題基本得到解決,以太網(wǎng)開始從不同的途徑進入到工業(yè)自動化和過程檢測等領(lǐng)域,很多組織和廠家開始開發(fā)基于以太網(wǎng)的監(jiān)控系統(tǒng)[1]。
本文所提出的繼電器" title="繼電器">繼電器可靠性檢測系統(tǒng)由服務(wù)器和多臺可靠性檢測裝置(客戶端)組成,可靠性檢測裝置是進行可靠性試驗的必要手段。服務(wù)器和可靠性檢測裝置通過調(diào)用TCP協(xié)議提供的套接字" title="套接字">套接字傳送數(shù)據(jù),實現(xiàn)了服務(wù)器對多臺檢測裝置的實時集中檢測和控制,在節(jié)省人力的同時有利于失效試驗數(shù)據(jù)的分析和處理。
2、可靠性檢測裝置的實現(xiàn)方法和功能
檢測裝置主要完成繼電器試品的定數(shù)截尾試驗,記錄失效信息,對檢測結(jié)果進行分析[2]。通過與服務(wù)器建立連接,實時上傳當前試驗狀態(tài)以及失效信息,并接收服務(wù)器的控制命令。
2.1 實現(xiàn)方法
為了滿足試驗環(huán)境的需要,采用工業(yè)控制計算機作為檢測裝置的核心。對觸點電壓的采集則選用兩塊高性能數(shù)據(jù)采集卡來實現(xiàn),可同時對兩組共32對觸點進行檢測,兩組試品可以是不同型號不同廠商的繼電器,而且對檢測觸點的常開常閉不做限制。需要注意的是,當觸點電壓為交流信號時,為了保證電壓有效值的計算精度,采集卡在一個工頻周期內(nèi)要完成16個采集通道至少320次的AD轉(zhuǎn)換,這就要求采集卡的采集速率非常快,本裝置采用的是研華的PCL-818HG。每塊采集卡還提供了一個20-PIN數(shù)字輸出口,用來控制試品線圈回路的通斷電。試品觸點回路采用一塊多通道的數(shù)字量輸出卡,通過固態(tài)繼電器實現(xiàn)對兩組試品觸點回路的通斷電控制。繼電器可靠性檢測裝置的結(jié)構(gòu)框圖如圖1所示。
圖1 可靠性檢測裝置結(jié)構(gòu)圖
如果某個試品的全部觸點均達到了最大允許失效次數(shù),那么在接下來的試驗中此試品要被剔除,不再進行試品線圈回路和觸點回路的通斷電操作,避免故障試品因長時間通電而發(fā)生危險[3]。
2.2 實現(xiàn)功能
檢測裝置的軟件由兩大部分組成:一是實時檢測與處理程序,包括了試驗參數(shù)的設(shè)置,對試驗狀態(tài)以及失效數(shù)據(jù)的保存,對失效數(shù)據(jù)進行數(shù)學(xué)分析,打印報表等,檢測裝置記錄的失效數(shù)據(jù)有失效時間,失效試品號、觸點號,觸點失效的類型,失效時觸點電壓以及各觸點累計失效次數(shù)等;二是通訊程序,接收服務(wù)器的參數(shù)設(shè)置、基本操作,并上傳試驗狀態(tài)及失效信息。圖2為檢測裝置的操作界面,菜單項代表了所能實現(xiàn)的所有操作,文本顯示區(qū)對設(shè)置參數(shù)、試驗狀態(tài)以及失效發(fā)生時的失效信息進行顯示。軟件采用可視化編程語言VC++6.0嵌入?yún)R編語言的方法實現(xiàn)[4]。
圖2 檢測裝置操作界面
3、集中控制的實現(xiàn)
以太網(wǎng)只定義了物理層和鏈路層,但目前在傳輸層和網(wǎng)絡(luò)層已基本上統(tǒng)一,TCP/IP協(xié)議被普遍采用。傳輸層協(xié)議包括UDP協(xié)議和TCP協(xié)議。無論是基于 UDP協(xié)議或者TCP協(xié)議,都要保證網(wǎng)絡(luò)傳輸?shù)囊欢ǖ目煽啃院蛯崟r性。由于UDP協(xié)議具有實現(xiàn)機制簡單、傳輸效率高的特點,其較多地被應(yīng)用到高效率的實時系統(tǒng)中。但為了實現(xiàn)傳輸?shù)目煽啃?,就需要在?yīng)用層采用一些差錯控制機制,而這些措施與TCP協(xié)議中自帶的傳輸機制非常相似。實際上,在許多實時性的系統(tǒng)中,采用TCP協(xié)議也基本可以滿足傳輸時間的要求,還避免了在應(yīng)用層進行繁瑣的處理[5]。因此在本方案中傳輸層選擇使用TCP協(xié)議。
應(yīng)用層的協(xié)議目前還沒有統(tǒng)一,本文旨在研究一個可廣泛適用于多種應(yīng)用場合和多種應(yīng)用層協(xié)議的通用的通信方案,用戶可根據(jù)需要選擇不同的應(yīng)用層協(xié)議,也可以定義自己的數(shù)據(jù)包格式。
3.1 套接字(Socket)
TCP/IP網(wǎng)絡(luò)環(huán)境下的應(yīng)用程序是通過網(wǎng)絡(luò)系統(tǒng)編程界面套接字Socket(在Windows操作系統(tǒng)下稱之為Winsock)來實現(xiàn)的。套接字構(gòu)成了核心協(xié)議的用戶視圖,通過套接字應(yīng)用程序可訪問通信協(xié)議,套接字是網(wǎng)絡(luò)通信的基本構(gòu)件。套接字是可以被命名的通信端點,應(yīng)用程序通過它在網(wǎng)絡(luò)上發(fā)送和接收數(shù)據(jù)。每個套接字都有其類型,并有一個與之相連的進程。TCP/IP提供3種類型套接字:
1)流式套接字(Stream Scoket)。該接口提供一個面向連接、可靠的數(shù)據(jù)傳輸服務(wù),數(shù)據(jù)無差錯、無重復(fù)地發(fā)送,且按發(fā)送順序接收。內(nèi)設(shè)流量控制,避免數(shù)據(jù)流超限;數(shù)據(jù)被看作字節(jié)流,無長度限制。流式套接字提供了一種可靠的面向連接的數(shù)據(jù)傳輸方式,如果想發(fā)送大批量數(shù)據(jù)或想讓數(shù)據(jù)按順序無重復(fù)地到達目的地,流式套接字最為有用。
2)數(shù)據(jù)包套接字(Datagram Scoket)。該接口提供一個無連接服務(wù)。數(shù)據(jù)包以獨立包形式被發(fā)送,不提供無錯保證,數(shù)據(jù)可能丟失或重復(fù),并且接收順序混亂。數(shù)據(jù)包套接字比較適用于數(shù)據(jù)包或記錄型數(shù)據(jù)的傳輸,數(shù)據(jù)包的發(fā)送不能得到保證,而且不能排序到達。
3)原始套接字(Raw Scoket)。該接口允許對較低層協(xié)議,如IP、ICMP直接訪問,主要用于新的網(wǎng)絡(luò)協(xié)議實現(xiàn)的測試等[6]。
在進行網(wǎng)絡(luò)開發(fā)時,阻塞問題是網(wǎng)絡(luò)編程中十分重要的問題。由于在阻塞模式下,在I/O操作完成前,執(zhí)行操作的Winsock函數(shù)會一直等待下去,不會立即返回程序(將控制權(quán)交還給程序)。故用這種方式,服務(wù)器應(yīng)用程序?qū)⒑茈y同時通過多個建好連接的套接字進行通信。在此系統(tǒng)的應(yīng)用中,需要實現(xiàn)一臺服務(wù)器同時和六個套接字進行通信,因此結(jié)合對有限硬件資源的考慮,選擇了非阻塞類型的套接字,這也是一般協(xié)議開發(fā)中通常用到的套接字通信方式。
3.2 通信的實現(xiàn)
系統(tǒng)通信采用客戶機/服務(wù)器模式,利用VC的微軟基礎(chǔ)類(MFC)進行網(wǎng)絡(luò)開發(fā),MFC提供了兩種類型描述Windows Socket,分別是CAsynSocket和CSocket。其中CAsynSocket類封裝了Windows Sockets API,并將與Socket有關(guān)的Windows消息轉(zhuǎn)換為回調(diào)函數(shù)。CAsynSocket處于網(wǎng)絡(luò)更底層,其使用就更具靈活性,相應(yīng)要求編程者應(yīng)熟悉網(wǎng)絡(luò)底層細節(jié)。而CSocket類是CAsynSocket類的派生類,通過MFC中的CArchive類的對象提供了更高層次的抽象,它封裝了 Socket實現(xiàn)中的許多細節(jié)。這里我們采用CAsynSocket類實現(xiàn)系統(tǒng)中“一對多”的數(shù)據(jù)發(fā)送,通過在服務(wù)器中建立Winsock空間數(shù)組的方式來解決[7]。
首先,構(gòu)造CAsyncSocket類型的對象,然后利用該對象創(chuàng)建內(nèi)嵌的Socket句柄。例如:
CAsyncSocket m_listen;
m_listen.Create(nPort);//服務(wù)器指定端口
若是客戶端,需要用CAsyncSocket::Connect()函數(shù)連接服務(wù)器端的套接字。
其次,若是服務(wù)器端的套接字,創(chuàng)建完成就可以偵聽端口,以便接收試圖連接到此端口的客戶端的套接字。接收了一個連接請求后就可以進行口令驗證或直接建立連接等工作。服務(wù)器偵聽的函數(shù)是CAsyncSocket::Listen(),接收客戶端套接字的函數(shù)是 CAsyncSocket::Accept()。
繼而采用CAsyncSocket類的成員函數(shù)進行數(shù)據(jù)的收發(fā)。發(fā)送的函數(shù)是CAsyncSocket::send(),接收的函數(shù)是CAsyncSocket::Receive()。
最后,通信結(jié)束后,通過CAsyncSocket::Close()函數(shù)銷毀對象。服務(wù)器與檢測裝置的通訊流程見圖3。
圖 3 服務(wù)器與檢測裝置通信流程圖
CAsyncSocket類對網(wǎng)絡(luò)回調(diào)函數(shù)做了較好的封裝。當有連接請求時,服務(wù)器端的套接字就會收到OnAccept消息,此消息觸發(fā)網(wǎng)絡(luò)回調(diào)函數(shù) OnAccept();當服務(wù)器接收了連接后,客戶端的套接字就會收到OnConnect消息,此消息觸發(fā)網(wǎng)絡(luò)回調(diào)函數(shù)OnConnect();當有數(shù)據(jù)傳來時,套接字會收到OnReceive消息,此消息觸發(fā)網(wǎng)絡(luò)回調(diào)函數(shù)OnReceive()。程序員也可以在CAsyncSocket類的派生類中重載以上回調(diào)函數(shù),實現(xiàn)特定的功能。
3.3 數(shù)據(jù)傳輸及服務(wù)器功能
服務(wù)器與檢測裝置在不同的狀態(tài)下需要傳輸大量的數(shù)據(jù),數(shù)據(jù)所代表的含義也各不相同,例如服務(wù)器通過以太網(wǎng)對檢測裝置的操作:簡單的有開始試驗、暫停試驗等,復(fù)雜的有設(shè)置檢測裝置工作參數(shù)、對號設(shè)置、讀取失效信息等。因此需要對服務(wù)器和檢測裝置傳輸?shù)臄?shù)據(jù)進行嚴格的定義,這里采?。?/p>
Command+Length+Content
Command:通信命令號,Length:文本字節(jié)長度,Content:文本字節(jié)內(nèi)容。
如果傳輸內(nèi)容為簡單的控制數(shù)據(jù),則文本字節(jié)長度和文本字節(jié)內(nèi)容都為零,否則應(yīng)按具體的通信內(nèi)容進行添加。
服務(wù)器內(nèi)部配置一預(yù)先定義的超時時間間隔,這個時間要足夠長,以使檢測裝置能夠作出正常的反應(yīng),超時事件將觸發(fā)服務(wù)器來處理錯誤。
服務(wù)器操作界面的菜單項和檢測裝置基本一致,在文本顯示區(qū)顯示所有建立連接的檢測裝置的試驗狀態(tài)和數(shù)據(jù)。建立連接后,通過服務(wù)器對檢測裝置進行操作和在現(xiàn)場直接操作檢測裝置的效果是一樣的。
4、實驗驗證
為了驗證本方案的可行性,整個檢測系統(tǒng)在宏發(fā)公司進行了長期的運行,通過網(wǎng)絡(luò)監(jiān)視軟件的分析,數(shù)據(jù)傳輸?shù)恼`碼率極低,在同一局域網(wǎng)內(nèi)數(shù)據(jù)傳輸?shù)耐禃r間大部分集中在100ms以內(nèi),達到了傳輸時間的要求,網(wǎng)絡(luò)傳輸中斷的情況基本沒有出現(xiàn)。
因此,本文所提出的基于以太網(wǎng)的繼電器可靠性檢測系統(tǒng)的通信方案,實時性較好,可靠性較高,能夠?qū)崿F(xiàn)服務(wù)器對現(xiàn)場設(shè)備的實時數(shù)據(jù)采集與監(jiān)控的功能,是切實可行的。且其開放性、可操作性也較高能夠適用于很多數(shù)據(jù)采集與監(jiān)控場合。