《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 模擬設(shè)計(jì) > 設(shè)計(jì)應(yīng)用 > 振蕩器及天線的集成式設(shè)計(jì)
振蕩器及天線的集成式設(shè)計(jì)
摘要: 提出并設(shè)計(jì)了集成振蕩器式有源天線,其采用正串聯(lián)反饋并工作在約為2.45GHz的中心頻率處。接線天線和振蕩器的設(shè)計(jì)步驟并行實(shí)現(xiàn)。電壓串聯(lián)反饋在振蕩器輸出導(dǎo)致了良好的動(dòng)態(tài)范圍。采用經(jīng)過(guò)校準(zhǔn)的輸出傳感器,對(duì)天線輸入端口處的實(shí)測(cè)頻率和正向功率,給出了可靠的結(jié)果,而不影響天線和振蕩器電路元件的輻射特性,已經(jīng)滿足所有標(biāo)稱的設(shè)計(jì)目標(biāo)。
Abstract:
Key words :

 

 小型化設(shè)計(jì)通常要求將多種器件集成到普通、緊湊的結(jié)構(gòu)中。銘記這一目標(biāo),作者追求集成振蕩器有源天線設(shè)計(jì),其標(biāo)稱工作頻率為2.45GHz。采用電壓串聯(lián)反饋來(lái)擴(kuò)大有源器件的不穩(wěn)定區(qū),同時(shí)也將輸入和輸出反射最大化。該設(shè)計(jì)包括了帶狀線饋入接線天線作為不穩(wěn)定有源器件的輸出端元件,在天線和忽略的有源 RF電路之間具有耦合效應(yīng)。在天線輸入端的輸出功率采用受特定相位噪聲和諧波水平影響的約束進(jìn)行優(yōu)化。為了評(píng)價(jià)沒(méi)有輻射特性干擾下的有源天線振蕩特性,經(jīng)過(guò)校準(zhǔn)的傳感器被放置在天線的輻射邊沿,該天線具有最高電壓。正如所示,在實(shí)現(xiàn)振蕩頻率調(diào)整后,滿足了目標(biāo)設(shè)計(jì)指標(biāo)。
振蕩器式有源微帶天線集成了具有微帶天線的有源器件來(lái)產(chǎn)生穩(wěn)態(tài)振蕩。該振蕩器采用有源器件的負(fù)阻特性將直流電源轉(zhuǎn)換為射頻功率。已經(jīng)研制成功這種有源天線的集成版本來(lái)用于在低功率水平的傳感器應(yīng)用。進(jìn)一步的研究已設(shè)法克服這種固態(tài)源設(shè)計(jì)的功率限制,這是因?yàn)榻Y(jié)合空間電源技術(shù)。該振蕩器包括了結(jié)合微帶天線的有源器件,該天線同時(shí)既是確定振蕩頻率的負(fù)載,又作為向空間輻射產(chǎn)生射頻功率的器件。適當(dāng)選擇有源器件的工作點(diǎn)對(duì)工作性能而言很重要。

對(duì)于振蕩器式有源微帶天線,有源器件可以是二端器件,例如,IMPATT器件和Gunn二極管,或者也可以是三端器件,例如金屬-外延-半導(dǎo)體場(chǎng)效應(yīng)管晶體管(MESFET)、高電子遷移率晶體管(HEMT),以及異質(zhì)結(jié)-雙極晶體管(HBT)器件。一般來(lái)說(shuō),每類固態(tài)源有利也有弊。二端器件適合毫米波頻率的高功率應(yīng)用,但具有低直流到射頻轉(zhuǎn)換效率,需要在電路與系統(tǒng)設(shè)計(jì)中認(rèn)真注意散熱。另一方面,三端器件可以提供高的直流到射頻轉(zhuǎn)換效率和低噪音指數(shù),但降低了功耗水平。

微帶天線具有適度尺寸、小外形,以及平面形狀的優(yōu)勢(shì),造就了低生產(chǎn)成本。平面結(jié)構(gòu)也適合于集成相關(guān)的電子電路,例如有源天線的形式。本論文報(bào)告了一項(xiàng)研發(fā)用于本地?zé)o線局域網(wǎng)(WLAN)以及藍(lán)牙有源發(fā)射天線的實(shí)驗(yàn)。該天線是一個(gè)工作在2.45GHz附近的振蕩器型微帶有源天線,其連接到一個(gè)二端不穩(wěn)定有源器件。該有源器件與矩形接線天線直接集成,除了一個(gè)在天線輸入端口和用于測(cè)量的有源器件之間引入短微帶線外。一般情況下,這種設(shè)計(jì)過(guò)程中,饋線損耗被認(rèn)為是微不足道的,但它包括在本論文中。

所有接線天線以及振蕩器的設(shè)計(jì)步驟都是并行執(zhí)行的。在天線旁引入了天線饋線的輻射影響,并且在饋線處的輸入阻抗變化作為振蕩器設(shè)計(jì)的輸入?yún)?shù)。采用電壓串聯(lián)反饋來(lái)將振蕩器輸出動(dòng)態(tài)范圍最大化,并保證保持工作在有源器件的最不穩(wěn)定區(qū),以滿足振蕩條件的需要。

天線被認(rèn)為是一個(gè)單端輸入(也可以認(rèn)為有兩個(gè)或兩個(gè)以上的輸入端口),并且在所關(guān)心的頻段上,所有與此相關(guān)的結(jié)果被變換到RF電路仿真器。然而,忽略了在天線和其它RF電路元件(如匹配器件和直流饋線)之間的耦合效應(yīng)。首先利用現(xiàn)行仿真器實(shí)現(xiàn)設(shè)計(jì)來(lái)預(yù)測(cè)所需的振蕩頻率,然后再進(jìn)行優(yōu)化。此后,實(shí)現(xiàn)非線性仿真來(lái)預(yù)測(cè)振蕩條件、相位噪聲和功率性能。

采用安捷倫科技公司的先進(jìn)設(shè)計(jì)系統(tǒng)(ADS)設(shè)計(jì)軟件工具,對(duì)包括了饋線和振蕩電路的天線特性進(jìn)行仿真和分析。10應(yīng)該指出的是,采用 Momentum軟件包對(duì)天線進(jìn)行建模,該軟件已包括在ADS內(nèi)。利用在GaAs MESFET有源器件的漏引腳插入一個(gè)電容器對(duì)振蕩頻率進(jìn)行精細(xì)調(diào)節(jié)和控制,從而滿足設(shè)計(jì)目標(biāo)(見(jiàn)下表)。據(jù)觀測(cè),所獲得的振蕩頻率范圍偏離2.45 GHz中心頻率的最大處約6.87%,具有低相位噪聲和可接受的輸出功率。



采用傳感器校正因子來(lái)確定天線輸入端口測(cè)量到的頻率和正向功率,當(dāng)天線與振蕩器電路截?cái)鄷r(shí),該校正因子被估算。傳感器是一小塊尺寸為3×5 mm的路徑,置于天線邊沿產(chǎn)生最高電壓。對(duì)傳感器和天線邊沿之間的距離進(jìn)行了優(yōu)化設(shè)計(jì)而不影響天線端口的輸入回波損耗,也滿足了校正因子的線性條件。結(jié)果發(fā)現(xiàn),需要2mm的距離(經(jīng)過(guò)實(shí)驗(yàn)調(diào)整),用于傳感器和天線之間帶狀線諧振頻率附近大約-22.6dB的耦合。該傳感器通路也通過(guò)50-O負(fù)載被連接到地線,從而改善傳感電路的輸出匹配。第二個(gè)引腳將傳感路徑連接到電路板背面同軸探頭,這將傳感器輸出接到頻譜分析儀。包含的50-O電阻可以確保這種傳感器功能正確,還保證了傳感器的輸出連接器作為一個(gè)相對(duì)良好匹配的源出現(xiàn)。這將減少將其連接到一個(gè)匹配很差的功率計(jì)或頻譜分析儀所可能造成的誤差。首先,當(dāng)將天線與有源RF電路截?cái)鄷r(shí),測(cè)量該校正因子:然后,重新連接來(lái)測(cè)量振蕩器的輸出功率。


安捷倫科技公司的ATF-10136型GaAs MESFET在4 GHz下具有0.5 dB的噪聲指數(shù),其被選為用于集成天線/振蕩器的不穩(wěn)定二端有源器件。通過(guò)將開(kāi)路傳輸線連接到FET源端口來(lái)代表電壓串聯(lián)反饋。對(duì)線性電路進(jìn)行了優(yōu)化,從而在2.45 GHz下將輸入和輸出端口的反射最大化。圖 1表示了這些反射的響應(yīng)。2.45
GHz下S11和S22的峰值分別為1.9和1.3;這些值被認(rèn)為在輸入和輸出穩(wěn)定環(huán)路是可以接受的,該環(huán)路需要集成天線/振蕩器設(shè)計(jì)。



天線和RF電路器件被安裝在羅杰斯公司(Rogers)具有以下規(guī)格的Duroid電路板材料上。相對(duì)介電常數(shù)、損失角正切,以及襯底高度分別是 2.55、0.0018和1.524 mm。作為有源天線振蕩電路有限接地的總面積大約是8×5 cm。天線被視為一個(gè)帶狀饋線矩形微帶通路。通路尺寸分別為長(zhǎng)度36 mm,寬度為46
mm,而饋線尺寸分別為長(zhǎng)15 mm,寬2 mm。2.45 GHz下饋線輸入端的回波損耗幅度和相位分別為0.299和-147度。
當(dāng)天線與RF電路被截?cái)鄷r(shí),天線饋線和輸出傳感器之間的二端S參數(shù)如圖2所示。當(dāng)傳感器置于距離輻射路徑末端2mm處時(shí),來(lái)自實(shí)測(cè)數(shù)據(jù)相應(yīng)的校準(zhǔn)因子 S'21由公式1計(jì)算得到:



圖3表示了從1.8至3.0 GHz校準(zhǔn)系數(shù)的響應(yīng)。然而,考察從2變化到4mm不同距離校正因子的變化,而這些測(cè)量表明,在2.45 GHz幅度變化的最高速率,在2mm距離初讀取的幅度約為0.25dB。還考察了在天線輸入回波損耗處該傳感器的影響,并發(fā)現(xiàn)小于0.01 dB,有賴于同軸饋線的使用。


天線輸入阻抗數(shù)據(jù)被變換到RF電路仿真器,并且觀察了有源器件輸入端口處的諧振條件。然后,使用有源器件的非線性模型對(duì)輸入匹配電路進(jìn)行了優(yōu)化,使得天線端口處的輸入功率最大化。非線性模型和有源天線振蕩電路的原型,其中包括了傳感器,分別如圖4和圖5所示。正如表中所示,由實(shí)測(cè)結(jié)果證明其滿足了所有指定的設(shè)計(jì)目標(biāo)。




圖6表示了自由運(yùn)行振蕩的頻譜分析圖,標(biāo)記在2.4240 GHz和-13.33dBm處。來(lái)自指定目標(biāo)的實(shí)測(cè)振蕩頻率之間的差別大約是1.23%:這代表了與使用射頻器件有關(guān)的誤差。通過(guò)改變天線輸入導(dǎo)納的靈敏度,在目標(biāo)輸出功率附近實(shí)現(xiàn)了振蕩頻率的精細(xì)調(diào)節(jié)和控制。這已經(jīng)通過(guò)將MESFET輸出與5-pF可變電容連接來(lái)實(shí)現(xiàn)。振蕩頻率范圍大約在目標(biāo)值的 6.4%之內(nèi)。

 

  總之,提出并設(shè)計(jì)了集成振蕩器式有源天線,其采用正串聯(lián)反饋并工作在約為2.45GHz的中心頻率處。接線天線和振蕩器的設(shè)計(jì)步驟并行實(shí)現(xiàn)。電壓串聯(lián)反饋在振蕩器輸出導(dǎo)致了良好的動(dòng)態(tài)范圍。采用經(jīng)過(guò)校準(zhǔn)的輸出傳感器,對(duì)天線輸入端口處的實(shí)測(cè)頻率和正向功率,給出了可靠的結(jié)果,而不影響天線和振蕩器電路元件的輻射特性,已經(jīng)滿足所有標(biāo)稱的設(shè)計(jì)目標(biāo)。
 

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。