《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 通信與網(wǎng)絡(luò) > 設(shè)計(jì)應(yīng)用 > ADSP-TS201在無(wú)線電測(cè)向系統(tǒng)中的應(yīng)用
ADSP-TS201在無(wú)線電測(cè)向系統(tǒng)中的應(yīng)用
來(lái)源:電子技術(shù)應(yīng)用2010年第8期
張 珊,周 欣,吳 瑛
信息工程大學(xué) 信息工程學(xué)院,河南 鄭州450002
摘要: 介紹了一種基于ADSP-TS201的無(wú)線電測(cè)向系統(tǒng)。給出了系統(tǒng)的總體結(jié)構(gòu)和工作原理,研究了MUSIC測(cè)向算法及基于零點(diǎn)預(yù)處理的波束合成算法,介紹了DSP模塊的設(shè)計(jì)思想和程序流程圖。實(shí)驗(yàn)證明,高性能的DSP芯片和優(yōu)越的陣列信號(hào)處理算法保證了系統(tǒng)能夠快速、準(zhǔn)確地對(duì)信號(hào)進(jìn)行定位和跟蹤,滿足了系統(tǒng)需求。
中圖分類號(hào): TN609
文獻(xiàn)標(biāo)識(shí)碼: A
文章編號(hào): 0258-7998(2010)08-0060-03
Application of ADSP-TS201 in radio direction-finding system
ZHANG Shan,ZHOU Xin,WU Ying
ZHANG Shan,ZHOU Xin,WU Ying
Abstract: In this paper, a radio direction-finding system based on ADSP-TS201 is introduced。The structure of system and the working scheme of main module is described, the MUSIC and null preprocessing based on known interference direction algorithm is researched. The designing thought of software and the flow chart of program is introduced. It has proved that high performance DSP and superior array signal processor algorithm can help the system to orient and follow the signal accurately and timely, it satisfies the need of system.
Key words : Institute of Engineering, Information Engineering University, Zhengzhou 450002,China

     無(wú)線電測(cè)向系統(tǒng)主要用來(lái)測(cè)定各類偵察目標(biāo)的地理位置和移動(dòng)情況,目前在技術(shù)偵察、電子對(duì)抗等領(lǐng)域已經(jīng)發(fā)揮了重要的作用。無(wú)線電測(cè)向系統(tǒng)主要包括兩方面功能:對(duì)空間信號(hào)波達(dá)方向(DOA)的估計(jì)和數(shù)字波束合成。波達(dá)方向的估計(jì)就是確定同時(shí)處在空間某一區(qū)域內(nèi)多個(gè)感興趣信號(hào)的空間位置(即多個(gè)信號(hào)到達(dá)陣列參考陣元的方位角及仰角);數(shù)字波束合成的目的是在增強(qiáng)期望信號(hào)的同時(shí)最大程度地抑制無(wú)用的干擾和噪聲,并提取有用的信號(hào)特征以及信號(hào)所包含的信息,主要是根據(jù)信號(hào)環(huán)境的變化,自適應(yīng)地改變各陣元的加權(quán)因子,在期望信號(hào)方向形成主波束,在干擾信號(hào)方向形成零陷,降低副瓣電平。本文所介紹的無(wú)線電測(cè)向系統(tǒng)要求在一定時(shí)間內(nèi)完成測(cè)向和波束合成,需要選擇合適的算法和快速的信號(hào)處理器來(lái)保證高速度、高靈敏度和高精度。
1 TS201的主要特點(diǎn)
    TS201是ADI公司繼ADSP-TS101之后又推出的新一代高性能Tiger-SHARC處理器,它集成了更大容量的存儲(chǔ)器,性價(jià)比很高。它兼有ASIC和FPGA的信號(hào)處理性能和指令集處理器的高度可編程性與靈活性,適用于高性能、大存儲(chǔ)量的信號(hào)處理和圖像應(yīng)用。其特點(diǎn)如下:
    (1)主頻為600 MHz,即單指令周期為1.67 ns;有2個(gè)對(duì)等的處理單元來(lái)支持SIMD(單指令多數(shù)據(jù))模式。
    (2)片內(nèi)24 Mbit的存儲(chǔ)空間,分成6個(gè)4 Mbit的存儲(chǔ)塊。DSP可以在一個(gè)周期內(nèi)從存儲(chǔ)器的任意位置加載一個(gè)2×128 bit的數(shù)據(jù)。
    (3)系統(tǒng)內(nèi)部有4條獨(dú)立的128 bit數(shù)據(jù)總線,分別訪問(wèn)不同的4 Mbit內(nèi)部存儲(chǔ)塊。
    (4)4個(gè)8 bit的全雙工鏈路口,各自可以獨(dú)立工作。在多處理器系統(tǒng)中,鏈路口可作為處理器之間的點(diǎn)到點(diǎn)通信,組成分布式的多處理器系統(tǒng)。14個(gè)DMA通道,可用于后臺(tái)傳輸。DMA傳輸速率可達(dá)1 Gb/s。
    (5)三級(jí)復(fù)位,即上電復(fù)位、正常復(fù)位和DSP核復(fù)位。
2 系統(tǒng)結(jié)構(gòu)
    無(wú)線電測(cè)向系統(tǒng)由4個(gè)部分組成:陣列天線、多通道接收機(jī)、陣列信號(hào)處理器以及監(jiān)控終端,如圖1所示。

    該系統(tǒng)采用9元均勻面陣,多通道接收機(jī)完成信號(hào)的采樣,再經(jīng)過(guò)數(shù)字下變頻,送到處理單元的9個(gè)通道。數(shù)字信號(hào)處理器為該系統(tǒng)的核心部分。由于考慮陣列信號(hào)處理的運(yùn)算量較大(特征值分解及多次復(fù)矩陣相乘等運(yùn)算),為了滿足系統(tǒng)實(shí)時(shí)性的要求,故選用2片主頻為600 MHz、內(nèi)存為24 Mbit的TS201芯片作為本系統(tǒng)的處理器。其中一片用來(lái)實(shí)現(xiàn)測(cè)向算法,另一片用來(lái)實(shí)現(xiàn)波束合成算法。
3 算法研究
3.1 算法簡(jiǎn)介

    通過(guò)對(duì)各種測(cè)向和波束合成算法的比較,選擇了多重信號(hào)分類MUSIC算法和基于干擾源定向的零點(diǎn)預(yù)處理算法。
    多重信號(hào)特征算法MUSIC(Multiple Signal Characteristic)是一種基于矩陣特征空間的方法,它將觀測(cè)空間分解為信號(hào)子空間和與之正交的噪聲子空間。信號(hào)子空間由陣列接收到的數(shù)據(jù)協(xié)方差距陣中與信號(hào)對(duì)應(yīng)的特征向量張成,而噪聲子空間則由該協(xié)方差距陣中所有最小特征值(噪聲方差)對(duì)應(yīng)的特征向量張成。多重信號(hào)特征法就是利用這兩個(gè)互補(bǔ)空間之間的正交特性來(lái)估計(jì)空間信號(hào)的方位,噪聲子空間的所有向量都被用來(lái)構(gòu)造譜估計(jì)器,所得空間方位譜中的峰值位置就是空間信號(hào)的方位估計(jì)。多重信號(hào)特征法大大提高了陣列信號(hào)處理的分辨率,可應(yīng)用于任意形狀的陣列和特性相異的陣元。
    基于干擾源定向的零點(diǎn)預(yù)處理算法是在對(duì)各種自適應(yīng)波束合成算法研究的基礎(chǔ)上,基于協(xié)方差矩陣的特征分解,結(jié)合采樣協(xié)方差矩陣求逆(SMI)算法[2]、基于特征空間(ESB)[3,4]、預(yù)投影變換[5]等自適應(yīng)波束合成算法的知識(shí),以及MUSIC 算法中對(duì)協(xié)方差矩陣進(jìn)行特征分解提取出信號(hào)子空間等手段而提出的一種新的自適應(yīng)波束合成方法。它與陣列形狀無(wú)關(guān),在對(duì)干擾源進(jìn)行精確定向的情況下,提取干擾信號(hào)的噪聲子空間對(duì)陣列觀測(cè)數(shù)據(jù)進(jìn)行零點(diǎn)預(yù)處理再進(jìn)行傳統(tǒng)的自適應(yīng)波束合成,從而使得陣列方向圖在干擾方向形成極深零陷的同時(shí)在期望方向形成主瓣。該算法對(duì)干擾的抑制能力很強(qiáng),合成增益接近最優(yōu);對(duì)幅相誤差、實(shí)際期望信號(hào)來(lái)向誤差不敏感,有著很強(qiáng)的穩(wěn)健性,適合實(shí)際使用。
    兩種算法的流程圖如圖2、圖3所示。

3.2 仿真結(jié)果
    MUSIC算法:
    仿真實(shí)驗(yàn)中,天線陣列為9元均勻面陣,天線陣元間距是二分之一中心波長(zhǎng),信號(hào)點(diǎn)數(shù)500點(diǎn),信號(hào)來(lái)波方向?yàn)閇15° 100°,60° 320°]。仿真結(jié)果見圖4。

    零點(diǎn)預(yù)處理算法:
    實(shí)驗(yàn)環(huán)境同MUSIC算法,設(shè)空間三個(gè)信號(hào),其中期望信號(hào)來(lái)波方向?yàn)閇100° 30°],干擾信號(hào)來(lái)波方向?yàn)閇40° 30°,160° 30°]。仿真結(jié)果見圖5。
    從圖4可以看出,在[15° 100°]和[60° 320°]方向上出現(xiàn)了2個(gè)尖峰,說(shuō)明MUSIC算法可以準(zhǔn)確地測(cè)出空間2個(gè)信號(hào)的來(lái)向。從圖5可以看出,零點(diǎn)預(yù)處理算法在期望方向形成主波束,在干擾方向形成門限。試驗(yàn)證明,選擇這兩種算法是正確合理的。

4 DSP模塊功能
    系統(tǒng)通信的命令格式如圖6。

    系統(tǒng)工作過(guò)程如下:
    監(jiān)控終端微機(jī)通過(guò)VXI總線給DSP-A發(fā)送命令,DSP-A接到命令后,按照內(nèi)部協(xié)議產(chǎn)生校驗(yàn)碼,如果與收到的校驗(yàn)碼一致,則根據(jù)命令號(hào)進(jìn)行相應(yīng)的測(cè)向或波束合成操作。中斷1用于DSP和監(jiān)控終端微機(jī)之間的通信,中斷0則用于2片DSP之間的通信。DSP-A若接到測(cè)向命令,則在DSP-A中取出測(cè)向結(jié)果;DSP-A若接到波束合成命令,則向DSP-B產(chǎn)生中斷0,取出波束合成結(jié)果。
    本系統(tǒng)采用2片DSP作為無(wú)線電測(cè)向系統(tǒng)的核心處理器,其中一片在50 ms之內(nèi)完成測(cè)向,另一片在10 ms之內(nèi)完成波束合成。根據(jù)實(shí)際需求,測(cè)向系統(tǒng)將完成以下功能:
    (1)多次測(cè)向:由于實(shí)際中測(cè)向結(jié)果存在誤差,通常進(jìn)行多次測(cè)向,再取平均,以提高精度。測(cè)向次數(shù)可以由用戶自由選擇。
    (2)自動(dòng)跟蹤:系統(tǒng)設(shè)置為自動(dòng)跟蹤態(tài)時(shí),先由DSP-A測(cè)出信號(hào)的角度信息,DSP-B再根據(jù)已知的角度信息進(jìn)行波束合成,使得主波束一直對(duì)準(zhǔn)期望信號(hào)的方向,以此達(dá)到跟蹤信號(hào)的目的。
    (3)指定方向:系統(tǒng)設(shè)置為指定方向態(tài)時(shí),DSP-B波束合成之后將主波束指向用戶指定的方向,以便用戶觀察自己感興趣方向上的信號(hào)動(dòng)向。
    2片DSP的程序流程圖如圖7、圖8所示。

    MUSIC和零點(diǎn)預(yù)處理算法中大部分都是復(fù)數(shù)運(yùn)算,其中復(fù)數(shù)相乘、復(fù)矩陣特征值分解所占比例較大,二維的譜峰搜索耗費(fèi)較多時(shí)間。為此,充分利用了TS201芯片雙處理器核的SIMD結(jié)構(gòu)和單周期內(nèi)可4字讀寫的特點(diǎn)。在一個(gè)周期內(nèi)同時(shí)向X核讀入實(shí)部,Y核讀入虛部,再同時(shí)進(jìn)行乘加運(yùn)算,雙核的使用使程序的運(yùn)行周期大大減少,約為單核的1/4。對(duì)于sin和cos的計(jì)算,以0.1°為間隔進(jìn)行查表運(yùn)算,比級(jí)數(shù)展開大大減少了運(yùn)算時(shí)間,精度也達(dá)到了系統(tǒng)所需的要求。此外,在TS201的仿真環(huán)境VisualDSP++3.5中,還存在Linear profiling工具,可以分析各個(gè)子函數(shù)占總運(yùn)行時(shí)間的比例,對(duì)于把握整個(gè)程序的運(yùn)行狀況、優(yōu)化程序的瓶頸,起了很好的幫助作用。由于TS201有24 Mbit等分為6個(gè)4 Mbit存儲(chǔ)塊的大容量存儲(chǔ)空間,它可以充分存儲(chǔ)這2個(gè)算法所運(yùn)行的全部數(shù)據(jù),不需要進(jìn)行內(nèi)存擴(kuò)展,這也是很多芯片所無(wú)法比擬的。綜上所述,通過(guò)合理的軟件結(jié)構(gòu)搭建和一系列的程序優(yōu)化措施,使DSP的運(yùn)行時(shí)間能夠較好地滿足系統(tǒng)所需的要求。
5 系統(tǒng)特點(diǎn)
    無(wú)線電測(cè)向系統(tǒng)要求必須以盡可能短的時(shí)間、盡可能高的精度對(duì)空中信號(hào)進(jìn)行定位和跟蹤。本系統(tǒng)充分考慮以上2個(gè)因素,具有以下特點(diǎn):
    (1)穩(wěn)健、高性能的算法。通過(guò)大量的仿真實(shí)驗(yàn)比較,本文選擇了具有高分辨率且性能穩(wěn)定的MUSIC算法和零點(diǎn)預(yù)處理算法。良好的算法保證了系統(tǒng)測(cè)向的精度和運(yùn)行的穩(wěn)定性。
    (2)合理的系統(tǒng)結(jié)構(gòu)。2片DSP的選用保證系統(tǒng)測(cè)向功能和波束合成功能互不干擾和影響。編程中充分注意雙核的并行使用及快速算法的運(yùn)用,使得系統(tǒng)的時(shí)效性大大提高(測(cè)向50 ms,波束合成10 ms)。
    (3)完備可靠的通信協(xié)議。所有的通信協(xié)議均通過(guò)算法進(jìn)行加密,正確的校驗(yàn)保證了數(shù)據(jù)和命令的可靠傳輸。
    本文給出的基于TS201的無(wú)線電測(cè)向系統(tǒng)能夠快速準(zhǔn)確地對(duì)信號(hào)進(jìn)行定位和跟蹤,通過(guò)選用高性能的MUSIC和零點(diǎn)預(yù)處理算法使得系統(tǒng)具有較高的測(cè)向精度,通過(guò)選用高速信號(hào)處理器ADSP-TS201使得系統(tǒng)具有較快的運(yùn)行速度。對(duì)DSP模塊合理的結(jié)構(gòu)搭建和一系列的優(yōu)化措施,使得系統(tǒng)滿足了指標(biāo)要求。
參考文獻(xiàn)
[1] VEEN B D V,BUCKLEY K M.B:Aversatile approach to spatial filtering.IEEE AES Magazine,1987,2(5):4-24.
[2] YU J L,YEH C C.Generlized eigenspace-based beamformers.IEEE Trans on Signal Processing,1995,43(1):2453-2461.
[3] LEE C C,LEE J H.Eigenspace-based adaptive array beam-forming with robust capabilities.IEEE Trans.Antennas Propagation,Propagation,1997,45(12):1711-17l6.
[4] AVID D,F(xiàn).A projection approach for adaptive beamforming.IEEE Trans.Signal Processing,1994,4(4):867-876.
[5] 王永良,陳輝.空間譜估計(jì)理論于算法[M].北京:清華大學(xué)出版社,2004.
[6] ADSP-TS201 TigerSHARC Hardware Reference.Analog  Devices Inc,August 2004.
[7] ADSP-TS201 TigerSHARC Processor Programming Reference.  Analog Devices Inc,August 2004.

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。