近年來,隨著無線通信技術(shù)的飛速發(fā)展,低成本、小型化、寬頻帶的多頻天線已經(jīng)成為現(xiàn)代無線覆蓋了2. 4~ 2. 485/ 5. 15~ 5. 35/ 5. 725~ 5. 825 GHz。
微帶天線由于重量輕、低剖面、體積小等優(yōu)點(diǎn),使得其受到了廣泛的關(guān)注。特別是無線局域網(wǎng)(WLAN)的應(yīng)用,更加要求能夠提供多頻帶工作的寬帶小型化天線,WLAN 在現(xiàn)有的微波通信系統(tǒng)中得到了廣泛的應(yīng)用。近年來,國(guó)內(nèi)外對(duì)WLAN 天線進(jìn)行了廣泛的研究。
文獻(xiàn)[ 5] 提出了一種應(yīng)用于5~ 6 GHz 無線通信的寬頻帶E 形微帶天線,但是僅僅工作在單一頻帶,不能滿足WLAN 的雙頻段覆蓋。
在文獻(xiàn)[ 5] 的基礎(chǔ)上,介紹一種E 形微帶貼片天線和一個(gè)微帶偶極子組合成的雙頻帶微帶天線。該天線采用縫隙耦合和電波引導(dǎo)的方式直接產(chǎn)生2 個(gè)帶寬。它能很好地滿足WLAN 和HIPERLNA( 5. 15~ 5. 35 GHz 和5. 47~ 5. 825 GHz) 的雙頻帶通信需求,同時(shí)滿足IEEE 802. 11 a/ b/ g 的通信需求,且結(jié)構(gòu)簡(jiǎn)單、易于設(shè)計(jì)和制造。天線的輻射部分主要有E 形微帶貼片和微帶偶極子組成。利用電磁仿真軟件CST 對(duì)設(shè)計(jì)天線的諧振特性和方向圖特性進(jìn)行了研究,仿真結(jié)果表明,該天線能滿足WLAN 的雙頻通信需求,且增益比同類天線有所提高。
1 天線的結(jié)構(gòu)和設(shè)計(jì)
天線的基本結(jié)構(gòu)如圖1 所示,整個(gè)天線制作在40 ×40 mm2 的泡沫塑料( 介電常數(shù)是1. 07,與空氣的介電常數(shù)接近) 板上,介質(zhì)板的高度為5 mm,E 形微帶貼片和微帶偶極子貼片的厚度均采用0. 2 mm的銅皮,接地板采用0. 2 mm 的銅皮,以確保天線有足夠的支撐強(qiáng)度。
圖1 天線的基本結(jié)構(gòu)
從圖1 可以看出,天線的基本結(jié)構(gòu)由E 形微帶貼片和微帶偶極子組成。E 形微帶貼片的兩個(gè)端臂等長(zhǎng),中間為同軸饋電端口。電波通過饋電端口均勻地分布在E 形微帶貼片和偶極子上,使得貼片產(chǎn)生兩個(gè)諧振頻率。耦合縫隙t、寬度W2、W1 和W 決定偶極子的輻射,產(chǎn)生低頻段的諧振頻率。E 形微帶天線產(chǎn)生天線的高頻段的諧振頻率,偶極子微帶天線諧振在低頻段,2 個(gè)輻射源共用一個(gè)同軸饋電。
圖2 給出了所設(shè)計(jì)天線的電流分布。從圖2( a)可以看出,電波通過嵌入E 形微帶貼片的連接傳輸線引導(dǎo)和縫隙t 的耦合作用,在偶極子上產(chǎn)生了很強(qiáng)的輻射,使得微帶偶極子的帶寬增加,從而滿足IEEE 802. 11b/ g 的通信需求。從圖2( b) 可以看出,電流均勻地分布在E 形微帶貼片的兩臂上,增加了電流的分布長(zhǎng)度,使得E 性天線有很大的帶寬,可以滿足5. 1~ 5. 825 GHz 無線通信的需求。
圖2 天線的電流分布
2 仿真結(jié)果與分析
根據(jù)以上的分析,采用E 形微帶貼片天線和微帶偶極子組合的結(jié)構(gòu),對(duì)工作在2. 4~ 2. 483 GHz和5. 1~ 5. 825 GHz的WLAN 天線進(jìn)行設(shè)計(jì)、仿真和優(yōu)化。
采用電磁仿真軟件CST 進(jìn)行建模仿真,考慮到仿真與實(shí)際工程的一致性,在建模的時(shí)候把輻射片與接地板之間的介質(zhì)板的介電常數(shù)直接設(shè)置為1 07。仿真得到的兩個(gè)諧振點(diǎn)的頻率為2 44 GHz和5 46 GHz。仿真結(jié)果如表1 所示。
從表1 中可以看出,天線在2 個(gè)諧振點(diǎn)有較高的輻射效率和增益。由于W1 和W2 是偶極子天線的寬度和偶極子天線的饋電傳輸線寬度,t 為E 形微帶貼片與偶極子微帶貼片之間的耦合縫隙,因此對(duì)W1、W2 和t 進(jìn)行優(yōu)化,不同寬度情況下的回波損耗曲線如圖3~ 圖5 所示。從圖3 上可以看出,當(dāng)調(diào)整W1 時(shí),天線的低頻段將隨著W1 的增大,天線的頻率有所升高。從圖4 上可以看出,當(dāng)調(diào)整W2 時(shí),偶極子天線與E 形微帶貼片之間的耦合電容和饋電傳輸線的阻抗發(fā)生了變化,使得天線的諧振點(diǎn)發(fā)生偏移,當(dāng)在W1= 6. 5 mm,W2= 1. 9 mm 時(shí),天線的諧振阻抗帶寬最大,天線的諧振頻率為2. 44 GHz 和5. 46 GHz,帶寬分別為83MHz 和812MHz。
表1 天線方向參數(shù)的仿真結(jié)果
從圖5 上可以看出,E 形微帶貼片與微帶偶極子天線之間的縫隙t 在間距大于1. 5mm 時(shí),對(duì)天線的工作帶寬影響較小。利用電磁仿真軟件CST 優(yōu)化后天線的結(jié)構(gòu)參數(shù)為: L1 = 25. 5 mm; L 2 =6. 8 mm; L3= 8 mm; W= 32 mm; W1= 6. 5 mm; W2=1. 9 mm; W3 = 4 mm; W4 = 8mm; t = 2. 5 mm; t 1 =1. 8 mm; t 2= 3. 6 mm; S = 4 mm。從圖4 還可以看出,天線的高頻段基本上是獨(dú)立的,受嵌入的饋電傳輸線的影響不大,因此該雙頻天線可以分別獨(dú)立設(shè)計(jì)。
圖3 W1 對(duì)天線的參數(shù)的影響
圖4 W2 對(duì)天線的參數(shù)的影響
圖5 t 對(duì)天線參數(shù)的影響
2 個(gè)諧振點(diǎn)的輻射方向圖如圖6 所示。由于該天線有很好的對(duì)稱特性,因此方向圖呈現(xiàn)較好的全向特性。總的來說在2 個(gè)諧振帶寬內(nèi),2 個(gè)諧振點(diǎn)有相似的輻射特性,實(shí)現(xiàn)了雙頻帶工作。從仿真的結(jié)果可以看出,所設(shè)計(jì)的天線在諧振帶寬內(nèi)有很好的匹配,并且高低頻段可以控制,可以實(shí)現(xiàn)各頻段獨(dú)立設(shè)計(jì),給工程實(shí)踐提供很好的參考。提出的寬頻帶小型化雙頻帶天線與以前提出的相似類型的天線相比,采用E 形微帶貼片天線和微帶偶極子天線組合的方式,易于實(shí)現(xiàn)。同時(shí)在阻抗帶寬和效率上有一定提高,主要是采用嵌入式傳輸線和耦合饋電微帶偶極子天線和寬帶E 形微帶貼片單元,使得微帶偶極子天線的效率和增益有所提高。
圖6 天線的輻射方向圖
3 結(jié)束語
通過E 形微帶貼片天線與微帶偶極子天線組合的方法,給出了一種新型的雙頻平面寬頻帶天線的結(jié)構(gòu)和設(shè)計(jì)方法。這種天線輪廓小,饋電簡(jiǎn)單,加工容易且成本低。其最大的優(yōu)點(diǎn)就是2 個(gè)頻段可以單獨(dú)設(shè)計(jì),且調(diào)節(jié)方便,通過改變對(duì)應(yīng)的尺寸,2 個(gè)諧振頻率可以較為獨(dú)立地調(diào)節(jié),這為天線的設(shè)計(jì)帶來了很大的方便。