《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 電源技術(shù) > 設(shè)計應(yīng)用 > 低壓差線性穩(wěn)壓器設(shè)計
低壓差線性穩(wěn)壓器設(shè)計
代國定 莊奕琪 劉鋒
摘要: 本文分析討論了低壓差線性穩(wěn)壓器的工作特性及設(shè)計考慮,并給出了關(guān)鍵模塊的電路設(shè)計圖,HSPICE 的模擬結(jié)果驗證了電路具有良好特性,該電路采用標(biāo)準(zhǔn)CMOS工藝實現(xiàn),具有較高的實用價值。
Abstract:
Key words :

隨著筆記本電腦、手機、PDA 等移動設(shè)備的普及,對應(yīng)各種電池電源使用的集成電路的開發(fā)越來越活躍,高性能、低成本、超小型封裝產(chǎn)品正在加速形成商品化。LDO(低壓" title="低壓">低壓差)型線性" title="線性">線性穩(wěn)壓器" title="穩(wěn)壓器">穩(wěn)壓器由于具有結(jié)構(gòu)簡單、成本低廉、低噪聲、小尺寸等特點,在便攜式電子產(chǎn)品中獲得了廣泛應(yīng)用。

  在便攜式電子產(chǎn)品中,電源效率越高意味著電池使用時間越長, 而線性穩(wěn)壓器效率=輸出電壓×輸出電流/輸入電壓×輸入電流×100% ,因此,輸入與輸出電壓差越低、靜態(tài)電流(輸入電流與輸出電流之差) 就越低,線性穩(wěn)壓器的工作效率就越高。

  本文設(shè)計的低壓差線性穩(wěn)壓器其輸出電壓為2.5V 或輸出可調(diào),滿足當(dāng)負(fù)載為1mA 時,最小輸入輸出壓差為0.4mV ,當(dāng)負(fù)載為300mA 時,壓差為120mV ,電源電壓工作范圍為2.5~6V。

  1  電路結(jié)構(gòu)與工作原理

  低壓差線性穩(wěn)壓器的電路結(jié)構(gòu)如圖1 所示,電路由調(diào)整管,帶隙基準(zhǔn)電壓、誤差放大器、快速啟動、過流限制、過熱保護(hù)、故障檢測、及取樣電阻網(wǎng)絡(luò)等模塊組成,并具有使能、輸出可調(diào)等功能。調(diào)整管作為壓差的負(fù)載器件,要滿足本設(shè)計的要求,對于它的選擇需重點考慮: 首先比較三極管和MOS管,由于三極管是流控器件,而MOS管是壓控器件,比較而言MOS管結(jié)構(gòu)的靜態(tài)電流更低。其次,NMOS管工作時需一比輸出電壓高的驅(qū)動信號,而PMOS管則無此需求,特別在低輸入電壓時要產(chǎn)生一高的驅(qū)動電壓變得較困難。因此,本文采用PMOS管作為調(diào)整管。

低壓差線性穩(wěn)壓器電路結(jié)構(gòu)

圖1  低壓差線性穩(wěn)壓器電路結(jié)構(gòu)

  電路的工作原理是: 在電路上電過程中,快速啟動電路內(nèi)有一個500μA 的電流源的對CC端的旁路電容C充電,使電路盡快上電啟動,誤差運放的同相端經(jīng)由取樣電阻R1 、R2對輸出電壓V0采樣,再與Vref比較后輸出放大信號,控制調(diào)整PMOS管的柵極電壓,使輸出電壓V0 保持穩(wěn)定,即:

公式

 

  電路在工作過程中出現(xiàn)過流、過熱情況時,過流限制與過熱保護(hù)電路會快速響應(yīng),調(diào)整管的導(dǎo)通狀態(tài)會被減弱、關(guān)斷,保護(hù)電路不致?lián)p壞,同時故障檢測電路會產(chǎn)生一個低電平信號。使能端接高電平時電路正常工作;當(dāng)使能端為低電平時,基準(zhǔn)電路及調(diào)整PMOS管關(guān)斷,電路處于等待狀態(tài)。

  2  關(guān)鍵特性分析及設(shè)計考慮

  2.1 漏失電壓(VDO) 和靜態(tài)電流(Iq)

  漏失電壓定義為維持穩(wěn)壓器正常工作的最小輸入輸出電壓差,它是反映調(diào)整管調(diào)整能力的一個重要因素。對采用PMOS 管作調(diào)整管的電路,漏失電壓由導(dǎo)通電阻(Ron) 和負(fù)載電流(Io) 確定,即: VDO = Io×Ron 。低壓差線性穩(wěn)壓器的靜態(tài)電流為輸入電流與輸出電流之差,即: Iq = Ii -Io。靜態(tài)電流由偏置電流和調(diào)整管的柵極驅(qū)動電流組成。對PMOS 調(diào)整管而言,柵極由電壓驅(qū)動,幾乎不產(chǎn)生功耗。在穩(wěn)壓器承載小負(fù)載或空載時,漏失電壓極低,靜態(tài)電流等于穩(wěn)壓器工作時的總偏置電流。設(shè)計時注意使PMOS 調(diào)整管的導(dǎo)通電阻和漏電流盡可能做小,各模塊電路在小電流狀態(tài)下能正常工作。

  2.2  功耗( Pw) 和效率(η)

  低壓差線性穩(wěn)壓器的功耗為輸入能量與輸出能量之差,即:

PW = VI II - VO IO = ( VI - VO) IO + VI Iq

  上式中,前一項是調(diào)整管產(chǎn)生的功耗,后一項是靜態(tài)電流功耗。穩(wěn)壓器效率如前所述可表示為:

  η= IO VO  /  ( IO + Iq ) VI ×100 % ,功耗與效率的表達(dá)式充分說明對于低壓差線性穩(wěn)壓器,低漏失電壓、低靜態(tài)電流意味著低功耗、高效率。

  2.3  負(fù)載調(diào)整能力和電壓調(diào)整能力

  負(fù)載調(diào)整能力指當(dāng)輸出電流變化時,輸出電壓維持一定值的能力,定義為: ΔVO / ΔIO ,它表征了負(fù)載變化而穩(wěn)壓器維持輸出在標(biāo)稱值上的能力,該值越小越好。電壓調(diào)整能力指當(dāng)輸入電壓變化時,輸出電壓維持一定值的能力,定義為: ΔVO / ΔVI ,它表征了輸入電壓變化而穩(wěn)壓器維持輸出在標(biāo)稱值上的能力,該值也是越小越好。對圖1 的電路結(jié)構(gòu)其負(fù)載調(diào)整能力和電壓調(diào)整能力分別為:

公式

 

  其中g(shù)m 為調(diào)整管的跨導(dǎo); Aod為誤差放大器的開環(huán)差模增益; Rds 為調(diào)整管源漏間的等效電阻; RL 為負(fù)載電阻; R1 、R2 為取樣電阻。由上式可見,減小ΔVO÷ΔIO 和 ΔVO÷ΔVI 的關(guān)鍵是盡可能增大gm 和Aod 。

  2.4 瞬態(tài)響應(yīng)

  瞬態(tài)響應(yīng)是穩(wěn)壓器的動態(tài)特性,指負(fù)載電流階躍變化引起輸出電壓的瞬態(tài)脈沖現(xiàn)象和輸出電壓恢復(fù)穩(wěn)定的時間,與輸出電容COUT和輸出電容的等效串聯(lián)電阻RESR ,以及旁路電容Cb有關(guān),最大瞬態(tài)電壓脈沖值ΔVTR(MAX) 為:

公式

 

  其中: IO(MAX) 是指發(fā)生階躍變化的最大負(fù)載電流;Δt1 是穩(wěn)壓器閉環(huán)的響應(yīng)時間,與穩(wěn)壓器閉環(huán)帶寬(0dB 頻率點) 有關(guān)。設(shè)計應(yīng)用時需考慮降低穩(wěn)壓器的瞬態(tài)電壓脈沖,即提高穩(wěn)壓器的帶寬,增大輸出和旁路電容,降低其等效電阻。

 2.5  輸出精度

  穩(wěn)壓器的輸出精度是由多種因素的變化在輸出端共同作用的體現(xiàn),主要有輸入電壓變化引起的輸出變化ΔVLR 、負(fù)載變化引起的輸出變化ΔVLDR 、基準(zhǔn)漂移引起的輸出變化ΔVref 、誤差放大器失調(diào)引起的輸出變化ΔVamp 、采樣電阻阻值漂移引起的輸出變化ΔVres 、以及工作溫度變化引起的輸出變化ΔVTC ,輸出精度ACC由下式給出:

公式

 

  其中ΔVref 、ΔVamp 及ΔVres對ACC影響較大,故基準(zhǔn)電壓源、誤差放大器及采樣電阻網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)在設(shè)計時需重點考慮。

  3  電路設(shè)計及模擬結(jié)果

  3.1 帶隙基準(zhǔn)電壓源的設(shè)計

  基準(zhǔn)電壓源是線性穩(wěn)壓器的核心模塊,是影響穩(wěn)壓器精度的最主要因素。帶隙基準(zhǔn)電壓源的工作原理是利用晶體管的VBE所具有的負(fù)溫度系數(shù)與不同電流密度下兩晶體管之間的ΔVBE所具有正溫度系數(shù)的特性,乘以合適的系數(shù)使二者相互補償,從而得到低溫漂的輸出電壓。

  電路實現(xiàn)如圖2所示,有: 

公式

  其中n 為Q1 、Q2 的發(fā)射區(qū)面積比。Hspice 模擬結(jié)果表明,當(dāng)電源電壓變化范圍在2.5~6V 之間時,常溫下VREF = 1.254V ,溫度變化范圍在-30~120 ℃之間時,溫漂系數(shù)小于10×10-6/ ℃。

帶隙基準(zhǔn)源電路

圖2 帶隙基準(zhǔn)源電路

  3.2  誤差放大器的設(shè)計

  誤差放大器將輸出反饋采樣電壓與基準(zhǔn)電壓進(jìn)行差值信號比較放大,輸出后控制調(diào)整管的導(dǎo)通狀態(tài),保持Vout穩(wěn)定,其增益、帶寬及輸入失調(diào)電壓等指標(biāo)對穩(wěn)壓器的輸出精度、負(fù)載和電壓調(diào)整能力、瞬態(tài)響應(yīng)等特性有較大影響,電路實現(xiàn)如圖3所示。通過Hspice 模擬得到該誤差放大器在VCC1為4.2V 時,其輸入失調(diào)電壓為0.05μV ,直流增益為110dB ,帶寬達(dá)到10MHz。

誤差放大器電路

 

圖3 誤差放大器電路

  3.3 過流限制模塊的設(shè)計

  過流限制電路的設(shè)計思路是通過對調(diào)整管柵源電壓進(jìn)行采樣,實現(xiàn)控制調(diào)整管的柵極電壓,從而達(dá)到限制輸出電流的目的,電路實現(xiàn)如圖4所示。

過流限制電路

圖4 過流限制電路

  當(dāng)負(fù)載電流由小增大時,VDrv隨之降低,調(diào)整管MTG的ID隨之增大,通過M20對調(diào)整管MTG的柵源電壓進(jìn)行采樣,使得M31 的柵極電壓增大,這樣M21的柵極電壓隨之降低,從而實現(xiàn)對VDrv的調(diào)整。通過Hspice 模擬得到,當(dāng)負(fù)載電流超過330mA 時,M21將開始導(dǎo)通,從而使VDrv 隨之提高,使調(diào)整管MTG導(dǎo)通程度減弱,起到限流保護(hù)作用。

  3.4  過熱保護(hù)模塊的設(shè)計

  過熱保護(hù)電路的設(shè)計思路是利用對溫度敏感的元件來檢測的片內(nèi)溫度的變化,當(dāng)溫度超過設(shè)定值時,保護(hù)電路動作,調(diào)整管被關(guān)斷,以防其損壞,電路實現(xiàn)如圖5所示。

過熱保護(hù)電路

圖5 過熱保護(hù)電路

  利用晶體管的VBE具有負(fù)溫度系數(shù)的特性,將Q0作為測溫元件,由M12 、M13 、M10 、M5 、和M4 形成一比較器,M11 、R1 和R2 組成分壓電路。在低于溫度設(shè)定值時設(shè)計VGM12< VGM13,比較器的輸出VGM3為低電平, Tout 的輸出為高電平,電路正常工作,當(dāng)溫度升高到超過設(shè)定值時,有VGM12> VGM13,比較器反轉(zhuǎn), VGM3 變?yōu)楦唠娖? TOUT的輸出為低電平,從而實現(xiàn)關(guān)斷調(diào)整管。本電路的溫度保護(hù)設(shè)定值為160 ℃,Hspice 的模擬結(jié)果如圖6所示,圖中×代表輸出電壓VOUT , ⊙代表VGM12,Δ 代表VGM13, 負(fù)載電流為300mA。

輸出電壓隨溫度的變化

 

圖6 輸出電壓隨溫度的變化( I0=300mA)

  3.5  總體電路模擬結(jié)果

  本電路采用韓國現(xiàn)代公司0.6μm 工藝模型,通過Hspice 對整體電路及各關(guān)鍵模塊進(jìn)行了模擬優(yōu)化,典型工作條件下模擬結(jié)果如表1,輸出電壓隨輸入電壓及溫度的變化如圖6、圖7所示,模擬結(jié)果充分驗證了設(shè)計的正確性。

總體電路模擬結(jié)果

 

圖7 輸出電壓隨輸入電壓的變化( IO = 300mA)

  4  總 結(jié)

  本文分析討論了低壓差線性穩(wěn)壓器的工作特性及設(shè)計考慮,并給出了關(guān)鍵模塊的電路設(shè)計圖,HSPICE 的模擬結(jié)果驗證了電路具有良好特性,該電路采用標(biāo)準(zhǔn)CMOS工藝實現(xiàn),具有較高的實用價值。

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。