《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計應(yīng)用 > 形態(tài)學(xué)分水嶺算法在粘連圖像分割中的應(yīng)用
形態(tài)學(xué)分水嶺算法在粘連圖像分割中的應(yīng)用
來源:微型機與應(yīng)用2012年第9期
張 芹,侯德文
(山東師范大學(xué) 信息科學(xué)與工程學(xué)院,山東 濟南250014)
摘要: 針對分水嶺算法對噪聲敏感和易于產(chǎn)生過分割的問題,提出運用頂帽變換對圖像進行Ostu局部閾值處理,改善光照不均和噪聲對圖像分割的影響;采用多尺度形態(tài)學(xué)梯度,解決結(jié)構(gòu)元素的形狀和尺寸對梯度圖像產(chǎn)生的影響。實驗結(jié)果表明,該算法既能有效地分割粘連顆粒,又能有效抑制過分割現(xiàn)象。
Abstract:
Key words :

摘  要: 針對分水嶺算法對噪聲敏感和易于產(chǎn)生過分割的問題,提出運用頂帽變換對圖像進行Ostu局部閾值處理,改善光照不均和噪聲對圖像分割的影響;采用多尺度形態(tài)學(xué)梯度,解決結(jié)構(gòu)元素的形狀和尺寸對梯度圖像產(chǎn)生的影響。實驗結(jié)果表明,該算法既能有效地分割粘連顆粒,又能有效抑制過分割現(xiàn)象。
關(guān)鍵詞: 圖像分割;數(shù)學(xué)形態(tài)學(xué);分水嶺算法;頂帽變換;多尺度形態(tài)學(xué)梯度

 圖像分割是將圖像中有意義的特征或者需要應(yīng)用的特征提取出來,這些特征可以是圖像的原始特征(如物體占有區(qū)的像素灰度值、物體輪廓曲線和紋理特征等),也可以是空間頻譜或直方圖特征等。圖像分割是圖像處理進入到圖像分析的關(guān)鍵步驟,也是圖像理解的基礎(chǔ),一方面,它是目標(biāo)表達的基礎(chǔ),對特征測量有重要的影響;另一方面,由于圖像分割及其基于分割的目標(biāo)表達、特征提取和參數(shù)測量等將原始圖像轉(zhuǎn)化為更抽象、更緊湊的形式,使更高層的圖像分析和理解成為可能。
 常用的圖像分割算法有閾值分割算法[1]、區(qū)域分割算法[2]、邊緣檢測算法[3-4]以及分水嶺算法等[5-6]。其中,分水嶺算法因具有計算速度快、邊界定位準(zhǔn)確等優(yōu)點而被廣泛應(yīng)用到糧食顆粒分割領(lǐng)域,但它本身存在嚴重的過分割問題,因此,有效降低過分割問題是目前人們研究的焦點之一。
目前主要有兩類方法解決分水嶺算法的過分割問題:一類是對原圖像進行預(yù)處理,它是基于標(biāo)記提取的分水嶺分割算法[7],每一個標(biāo)記對應(yīng)著圖像中的一個物體;另一類是對圖像分割后再進行處理[8],根據(jù)某種準(zhǔn)則進行區(qū)域合并。本文重點研究第一類解決方法。

 



2 分水嶺變換算法及其改進
2.1 算法原理

 分水嶺分割算法的思想源于測地學(xué)中的地膜形態(tài)模型。VINCENT L[10]于1991年提出了著名的基于浸沉的分水嶺算法。其原理描述如下:首先將一幅圖像視為跌宕起伏的地貌模型,圖像中每個像素的灰度值對應(yīng)地形中的高度(即海拔),將均勻灰度值的局部極小區(qū)域視為盆地,并在最低處穿孔,使水慢慢地均勻浸入各個孔,當(dāng)水將填滿盆地時,在某兩個或多個盆地之間修建大壩。隨著水位的不斷上升,各個盆地完全被水淹沒,只剩沒被淹沒的各個大壩,并且各個盆地也完全被大壩所包圍,從而可以得到各個大壩(即分水嶺)和各個被大壩分開的盆地(即目標(biāo)物),最終達到分割粘連物體的目的。
2.2 頂帽變換
 頂帽(top-hat)變換即從原圖像中減去開運算的圖像,這樣,原圖像中與結(jié)構(gòu)元素相匹配的區(qū)域就得到增強,從而達到從圖像中提取給定目標(biāo)體的目的。
 本文對頂帽變換后的圖像進行處理,首先用尺度為1~n的結(jié)構(gòu)元素對圖像進行腐蝕,當(dāng)腐蝕到所有的目標(biāo)都分離時停止腐蝕。然后用尺度為2~n的結(jié)構(gòu)元素進行膨脹。圖2(a)為頂帽變換的圖像,圖2(b)為對頂帽變換進行改進的圖像。從圖2可以看出,經(jīng)過對頂帽變換圖像的處理,物體之間的粘連明顯減少。

2.3 形態(tài)學(xué)多尺度梯度
 考慮式(6)的形態(tài)學(xué)梯度,結(jié)構(gòu)元素的尺寸和形狀會對梯度圖像產(chǎn)生一定影響[11]。
不同尺度結(jié)構(gòu)元素的形態(tài)學(xué)梯度如圖3所示。圖3(a)為原始圖像,圖3(b)~圖3(h)為用尺度為1~7的圓形結(jié)構(gòu)元素得到的梯度圖像,圖3(i)~圖3(l)與圖3(m)~圖3(p)分別是用尺度為1~4的菱形和方形結(jié)構(gòu)元素得到的梯度圖像。從圖3可以看出,隨著結(jié)構(gòu)元素尺度的增大,得到的梯度圖像的邊界厚度也在增大;此外,不同結(jié)構(gòu)元素產(chǎn)生的梯度圖像也有所不同。這充分說明在形態(tài)學(xué)運算中結(jié)構(gòu)元素選擇的重要性。結(jié)構(gòu)元素形狀的選擇由原始圖像中包含的形狀特征而定,如對于大米圖像,結(jié)合其橢圓形的形狀特性,一般用圓形結(jié)構(gòu)元素來處理。



 由圖5可以看出,局部閾值處理能夠很好地解決光照不均、背景灰度變化以及全局閾值不宜分割圖像等問題。
3.2 實驗結(jié)果
 為了驗證本算法的有效性,分別采用本算法和標(biāo)記分水嶺算法在Matlab7.0中對米粒圖和按釘圖進行了分割,結(jié)果如圖6和圖7所示。本算法與標(biāo)記分水嶺算法在分割區(qū)域個數(shù)與執(zhí)行時間上的對比如表1所示。

 由圖6和表1可以看出,雖然本算法比控制標(biāo)記符的分水嶺算法執(zhí)行的時間長,但分割效果更好,幾乎不存在過分割和欠分割現(xiàn)象。
 本文通過運用頂帽變換和改進的多尺度形態(tài)學(xué)梯度來改進形態(tài)學(xué)分水嶺算法,有效地改善了光照不均、噪聲和結(jié)構(gòu)元素的形狀和尺寸對圖像分割的影響,在一定程度上改善了分水嶺算法的過分割問題。實驗證明,該算法有效減少了分割區(qū)域的個數(shù)。單就形態(tài)學(xué)分水嶺算法而言,雖然計算復(fù)雜性增加了,但對于粘連分割的效果理想,為后續(xù)的工作奠定了良好的基礎(chǔ)。
參考文獻
[1] 崔明,孫守遷,潘云鶴.基于改進快速分水嶺變換的圖像區(qū)域融合[J].計算機輔助設(shè)計與圖形學(xué)學(xué)報,2005,17(3):546-552.
[2] 高麗,楊樹元,李海強. 一種基于標(biāo)記的分水嶺圖像分割新算法[J].中國圖象圖形學(xué)報,2007,12(6):1025-1032.
[3] 張立東,畢篤彥.一種基于洪水消退模型的快速分水嶺算法[J].模式識別與人工智能,2006,19(3):349-360.
[4] 許向陽,宋恩民,金良海,等.邊緣和區(qū)域多階段結(jié)合的圖像分割[J].小型微型計算機系統(tǒng),2011,32(5):943-946.
[5] 張鯤,王士同.一種順序無關(guān)的改進分水嶺圖像分割算法[J].計算機應(yīng)用,2008,28(4):969-972.
[6] 蔡念,唐孝艷,許少睿,等.基于分水嶺算法的MELK圖像分割[J].計算機應(yīng)用研究,2009,26(8):3175-3176.
[7] Gao Hai, Siu Wanchi, Hou Chaohuan. Improved techniques for automatic image segmentation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2001,11(12):1273-1280.
[8] O′CALLAGHAN R J, BULL D R. Combined morphological- spectral unsupervised image segmentation[J]. IEEE Transactions on Image Processing, 2005,14(1):49-62.
[9] 謝文娟.基于改進分水嶺算法的細胞圖像分割[D].武漢:中南民族大學(xué),2010.
[10] VINCENT L, SOILLE P. Watersheds in digital spaces:an efficient algorithm based on immersion simulations[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13(6):583-598.
[11] 商艷麗,夏志成.基于形態(tài)學(xué)多尺度算法的肺部CT圖像邊緣檢測[J].自動化與儀器儀表,2008(1):43-45.
[12] GONZALEZ R C, WOODS R E, EDDINS S L.數(shù)字圖像處理(MATLAB版)[M].阮秋琦,譯.北京:電子工業(yè)出版社,2009.

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。