摘 要: 研究了ZigBee技術及JN5139混合信號微控制器,從無線傳感器網(wǎng)絡的基本單元出發(fā),基于JN5139CPU模塊設計了具有全功能設備(FFD)的靈活多變、性能優(yōu)越的太陽能LED路燈狀態(tài)傳感器節(jié)點,該節(jié)點同時具有路由功能,可以構成樹形或網(wǎng)狀拓撲結構。為無線傳感器網(wǎng)絡的深入研究提供了一個良好的硬件平臺。系統(tǒng)具有較高的精度,實用性強,成本低,功耗小,應用前景良好。
關鍵詞: 太陽能LED路燈;ZigBee;JN5139
隨著太陽能LED路燈在城市照明系統(tǒng)中的廣泛應用,如何節(jié)約能源、提高路燈能源的利用率己成為急需解決的問題。太陽能LED路燈涉及到光伏電池、LED燈頭、蓄電池和路燈控制系統(tǒng),能否最大效率地利用太陽能和延長LED燈頭的使用壽命,是目前迫切需要解決的問題。ZigBee技術以其功耗低、通信可靠、網(wǎng)絡容量大等特點為路燈自動控制領域提供了較合適的解決方案[1-3]。
本文研究了ZigBee技術及JN5139混合信號微控制器,從無線傳感器網(wǎng)絡的基本單位出發(fā),采用照度傳感器、溫度傳感器、直流電壓傳感器和電流傳感器分別采集光伏電池電流電壓、蓄電池電流電壓、LED燈頭溫度和照度等數(shù)據(jù),設計了基于JN5139模塊的具有全功能設備(FFD)的靈活多變、性能優(yōu)越的太陽能LED路燈狀態(tài)傳感器節(jié)點,為組建高性能的無線傳感器網(wǎng)絡做了基礎性的工作。將ZigBee技術結合傳感器技術組成網(wǎng)絡,解決其他控制方法中存在的問題:選擇亮度傳感器實時采集LED燈頭照度,降低了特殊環(huán)境、特殊時間誤開誤關的幾率,擺脫了人工干預。
1 太陽能LED路燈狀態(tài)傳感器節(jié)點的結構
傳感器節(jié)點基本結構如圖1所示,主要包括傳感器、信號調(diào)理電路、A/D轉換器、微處理器、射頻通信模塊、定位模塊和電源模塊等。傳感器模塊負責監(jiān)測區(qū)域內(nèi)信息的采集和數(shù)據(jù)轉換;處理器模塊負責控制整個傳感器節(jié)點的操作,存儲和處理本身采集的數(shù)據(jù)以及其他節(jié)點發(fā)來的數(shù)據(jù);無線通信模塊負責與其他傳感器節(jié)點進行無線通信,交換控制信息和收發(fā)采集數(shù)據(jù);能量供應模塊為傳感器節(jié)點提供所需的能量。
2 傳感器節(jié)點的功能
一般的ZigBee網(wǎng)絡由3種節(jié)點組成:協(xié)調(diào)器、路由器和終端設備。協(xié)調(diào)器是網(wǎng)絡的中心節(jié)點,負責網(wǎng)絡的組織和維護;路由器負責網(wǎng)絡內(nèi)數(shù)據(jù)幀的路由;而終端設備則是實現(xiàn)具體功能的單元。本節(jié)點設計為全功能節(jié)點(FFD)設備,起到路由的作用,同時負責本地太陽能LED路燈狀態(tài)等參數(shù)的數(shù)據(jù)采集,可實現(xiàn)如下功能:
(1)傳感器節(jié)點能定時向監(jiān)測分中心發(fā)送太陽能LED路燈狀態(tài)測量數(shù)據(jù);
(2)傳感器節(jié)點能響應監(jiān)測分中心的要求,實時采集太陽能LED路燈狀態(tài)數(shù)據(jù);
(3)當傳感器節(jié)點檢測到數(shù)據(jù)超過閾值或者自身能量較低時,發(fā)送報警消息;
(4)能按照時間自動存貯太陽能LED路燈狀態(tài)數(shù)據(jù),同時可以查詢某一時刻的太陽能LED路燈狀態(tài)數(shù)據(jù);
(5)微型化、低功耗、低成本,具有高可靠性、穩(wěn)定性和安全性。
3 傳感器節(jié)點的硬件設計
傳感器節(jié)點是由全功能設備(FFD)構成,其結構框圖如圖1所示。
3.1 微處理器模塊
作為ZigBee網(wǎng)絡中的節(jié)點,低功耗設計尤為重要。經(jīng)過詳細的器件功耗比較之后,選取JN5139混合信號微控制器作為處理器模塊的核心。JN5139是集成了uFl天線的高功率模塊,可以在最短的時間內(nèi)在最低的成本下實現(xiàn)IEEE802.15.4或ZigBee兼容系統(tǒng)。該表貼模塊利用Jennic的JN5139無線微控制器來提供完整的射頻和RF器件的解決方案。模塊提供了開發(fā)無線傳感器網(wǎng)絡所需要的豐富的外圍器件。模塊特性:集成uFl天線插槽;兼容2.4 GHz、IEEE802.15.4和ZigBee協(xié)議;2.7 V~3.6 V操作電壓;睡眠電流(包括睡眠定時器處于活動狀態(tài))2.8 μA;接收靈敏度-100 dBm。MCU特性:16 MHz 32 bit RISC CPU;96 KB RAM, 192 KB ROM;4個輸入端口,12 bit ADC,2個11 bit DAC,2個比較器,2個應用級定時器/計數(shù)器,2個串口(一個用于系統(tǒng)在線調(diào)試),1個SPI接口,支持5個片選。能夠組建健壯的、安全的低功耗無線網(wǎng)絡應用。
3.2 傳感器及調(diào)理電路模塊
蓄電池電流和電壓檢測電路的設計原理圖如圖2所示。電流檢測電路由霍爾電流傳感器TBC10SY和取樣電阻、電平調(diào)整電路、跟隨器電路、濾波電路等組成;電壓檢測電路由取樣電路、跟隨器電路、濾波電路等組成。需要注意的是電流檢測電路中充電電流和放電電流方向相反,需要通過電壓提升電路將負電壓值轉換為正值,并在程序中予以處理。
光伏電池電流和電壓檢測電路的設計原理圖如圖3所示[4]。將串入光伏電池供電電路的精密小電阻上的信號作為電流檢測信號,采用集成運放ICL7650制作差分放大電路,這樣可以最大限度地減少對被測電路的影響。將并入光伏電池的大電阻分壓器上獲取小信號作為電壓信號,同樣采用集成運放ICL7650制作差分放大電路。為了消除干擾,采用兩個等值電阻分別接于放大器的兩個輸入端和地之間,同時在放大器輸出端增加濾波電路,經(jīng)過濾波后的電流和電壓信號輸出到控制器JN5139的A/D轉換接口。
LED燈頭照度檢測電路如圖4所示。照度檢測采用On9658集成傳感器,傳感器獲取的信號經(jīng)過放大器放大和濾波后輸出到控制器JN5139的A/D轉換接口。
LED燈頭溫度檢測電路如圖5所示。蓄電池溫度采用SHT11集成溫度傳感器。
4 傳感器節(jié)點的軟件設計
4.1 軟件系統(tǒng)的總體設計
軟件系統(tǒng)的主要功能包括傳感器數(shù)據(jù)采集與處理、無線收發(fā)和節(jié)點定位等,采用模塊化設計。傳感器數(shù)據(jù)采集與處理模塊主要設置蓄電池狀態(tài)信號的采集參數(shù)并控制采集;無線收發(fā)模塊通過設置寄存器控制對命令或數(shù)據(jù)的接收和發(fā)送;節(jié)點定位模塊對節(jié)點進行實時定位。傳感器節(jié)點設計為全功能設備(FFD),同時具有路由功能,其程序流程圖如圖6所示。在任務隊列中加入主任務進行數(shù)據(jù)采集、報警檢測和自身能量檢測并調(diào)用ZigBee發(fā)送任務;產(chǎn)生JN5139引腳中斷時,CPU轉去執(zhí)行ZigBee接收中斷服務程序。如果是采集命令,則立即執(zhí)行數(shù)據(jù)采集和發(fā)送;如果是路由包,則立即執(zhí)行路由更新。
4.2 節(jié)點定位算法設計[5]
節(jié)點采用基于接收信號強度指示定位算法實現(xiàn)的精確定位。已知發(fā)射節(jié)點的發(fā)射信號強度,接收節(jié)點根據(jù)收到信號的強度計算出信號的傳播損耗,然后根據(jù)信號傳播模型公式將傳輸損耗轉化為距離,再利用三邊測量法計算出未知節(jié)點的位置。在實際定位中,要保證未知節(jié)點處于3個以上發(fā)射信號強度和位置坐標已知的參考節(jié)點的通信范圍內(nèi),未知節(jié)點根據(jù)接收信號強度計算出信號的傳播損耗,進而計算出節(jié)點位置。
本文介紹了基于無線傳感網(wǎng)絡的高精度太陽能LED路燈狀態(tài)傳感器節(jié)點的設計,在實際測試過程中,系統(tǒng)運行穩(wěn)定,測量結果符合實際,完全達到了對信號高精度的采集與無線傳輸,取得了較好的監(jiān)測效果。該系統(tǒng)結合無線傳感網(wǎng)絡具有的低功耗、低成本和節(jié)點多等優(yōu)勢,在無線通信技術遠距離、高可靠性等關鍵問題解決過程中的應用會越來越廣泛。
參考文獻
[1] 林方鍵,胥布工.基于ZigBee網(wǎng)絡的路燈節(jié)能控制系統(tǒng)[J].控制工程,2009,16(3):365-367.
[2] 王東東,郭文成.基于ZigBee技術的路燈無線網(wǎng)絡控制系統(tǒng)[J].天津工業(yè)大學學報,2009,28(1):84-88.
[3] 郭佑民,劉娟,孟凡剛,等.基于ZigBee的智能型LED路燈 照明系統(tǒng)設計[J].蘭州交通大學學報,2010,29(4):36-39.
[4] 苗洪利.基于LabVIEW太陽能路燈充放電監(jiān)測系統(tǒng)[J].微計算機信息,2007,23(5):88-90.
[5] Lin Shizhuang,Liu Jingyu,F(xiàn)ang Yanjun.ZigBee based wireless sensor networks and its application in industrial[C]. Proceeding of the IEEE International Conference on Automation and Logisitics(ICAL),2007:1979-1983.