《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 嵌入式技術(shù) > 設(shè)計(jì)應(yīng)用 > 壓電陶瓷電特性測(cè)試與分析
壓電陶瓷電特性測(cè)試與分析
2016年電子技術(shù)應(yīng)用第8期
黃家榮1,2,葉曉靖2
1.工業(yè)和信息化部電子第五研究所,廣東 廣州510610;2.華南理工大學(xué) 物理與光電學(xué)院,廣東 廣州510640
摘要: 通過(guò)對(duì)壓電陶瓷器件進(jìn)行阻抗測(cè)試可得到壓電振子等效電路模型參數(shù)與諧振頻率。通過(guò)對(duì)壓電陶瓷器件電容值、溫度穩(wěn)定性、絕緣電阻、介質(zhì)耐電壓等電性能參數(shù)進(jìn)行測(cè)量與分析后可知:壓電陶瓷器件電特性符合一般電容器特點(diǎn),所用連接線材在較低頻率下寄生電容不明顯,在常溫下工作較穩(wěn)定,厚度較厚的產(chǎn)品絕緣性和可靠性指標(biāo)較好。
中圖分類(lèi)號(hào): TN384
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.2016.08.002
中文引用格式: 黃家榮,葉曉靖. 壓電陶瓷電特性測(cè)試與分析[J].電子技術(shù)應(yīng)用,2016,42(8):16-20.
英文引用格式: Huang Jiarong,Ye Xiaojing. Testing and analysis of PZT electrical characteristic[J].Application of Electronic Technique,2016,42(8):16-20.
Testing and analysis of PZT electrical characteristic
Huang Jiarong1,2,Ye Xiaojing2
1.The Fifth Electronics Research Institute of Ministry of Industry and Information Technology,Guangzhou 510610,China; 2.School of Physics and Optoelectronics,South China University of Technology,Guangzhou 510640,China
Abstract: By impedance measurements of piezoelectric ceramic components, we got the piezoelectric vibrator′s parameters of equivalent circuit model and resonance frequency. Based on piezoelectric ceramic device capacitance, temperature stability, insulation resistance, medium resistance to voltage and other electrical parameters measurement and analysis also shows that after the device electrical characteristics of piezoelectric ceramic conforms to the general characteristics of capacitor, the connection wire used under low frequency parasitic capacitance is not obvious, work more stable at room temperature, the thickness of the thicker insulation products and reliability index is better.
Key words : PZT;equivalent circuit model;electrical characteristic;reliability

0 引言

  壓電陶瓷(Piezoelectric Ceramics,PZT)受到微小外力作用時(shí),能把機(jī)械能變成電能,當(dāng)加上電壓時(shí),又會(huì)把電能變成機(jī)械能。它通常由幾種氧化物或碳酸鹽在燒結(jié)過(guò)程中發(fā)生固相反應(yīng)而形成,其制造工藝與普通的電子陶瓷相似。與其他壓電材料相比,具有化學(xué)性質(zhì)穩(wěn)定,易于摻雜、方便塑形的特點(diǎn)[1],已被廣泛應(yīng)用到與人們生活息息相關(guān)的許多領(lǐng)域,遍及工業(yè)、軍事、醫(yī)療衛(wèi)生、日常生活等。利用鐵電陶瓷的高介電常數(shù)可制作大容量的陶瓷電容器;利用其壓電性可制作各種壓電器件;利用其熱釋電性可制作人體紅外探測(cè)器;通過(guò)適當(dāng)工藝制成的透明鐵電陶瓷具有電控光特性,利用它可制作存貯,顯示或開(kāi)關(guān)用的電控光特性器件。通過(guò)物理或化學(xué)方法制備的PZT、PLZT等鐵電薄膜,在電光器件、非揮發(fā)性鐵電存儲(chǔ)器件等有重要用途[2-5]。

  為了保護(hù)生態(tài)環(huán)境,歐盟成員國(guó)已規(guī)定自2006年7月1日起,所有在歐盟市場(chǎng)上出售的電子電氣產(chǎn)品設(shè)備全部禁止使用鉛、水銀、鎘、六價(jià)鉻等物質(zhì)。我國(guó)對(duì)生態(tài)環(huán)境的保護(hù)也是相當(dāng)重視的。因此,近年來(lái)對(duì)無(wú)鉛壓電陶瓷進(jìn)行了重點(diǎn)發(fā)展和開(kāi)發(fā)。但無(wú)鉛壓電陶瓷性能相對(duì)于PZT陶瓷來(lái)說(shuō),總體性能還是不足以與PZT陶瓷相比。因此,當(dāng)前乃至今后一段時(shí)間內(nèi)壓電陶瓷首選仍將是以PZT為基的陶瓷。

  本文將應(yīng)用逆壓電效應(yīng)以壓電陶瓷蜂鳴片為例進(jìn)行阻抗測(cè)試、電容值、絕緣電阻、介質(zhì)耐電壓等電性能參數(shù)進(jìn)行測(cè)量與分析。

1 測(cè)量參數(shù)和實(shí)驗(yàn)方法依據(jù)

  目前我國(guó)現(xiàn)有的關(guān)于壓電陶瓷材料的測(cè)試標(biāo)準(zhǔn)主要有以下:

  GB/T 3389-2008 壓電陶瓷材料性能測(cè)試方法

  GB/T 6427-1999 壓電陶瓷振子頻率溫度穩(wěn)定性的測(cè)試方法

  GB/T 16304-1996 壓電陶瓷電場(chǎng) 應(yīng)變特性測(cè)試方法

  GB 11387-89 壓電陶瓷材料靜態(tài)彎曲強(qiáng)度試驗(yàn)方法

  GB 11320-89 壓電陶瓷材料性能方法(低機(jī)械品質(zhì)因數(shù)壓電陶瓷材料性能的測(cè)試)

  GB 11312-89 壓電陶瓷材料和壓電晶體聲表面波性能測(cè)試方法

  GB 11310-89 壓電陶瓷材料性能測(cè)試方法相對(duì)自由介電常數(shù)溫度特性的測(cè)試

  壓電陶瓷蜂鳴片由一塊兩面印刷有電極的壓電陶瓷板和一塊金屬板(黃銅或不銹鋼等)組成。當(dāng)在壓電振動(dòng)板的兩個(gè)電極間施加直流電壓時(shí),由于逆壓電效應(yīng),導(dǎo)致金屬片機(jī)械變形。因此,當(dāng)交流電壓穿過(guò)電極時(shí),金屬片彎曲就會(huì)交替重復(fù)發(fā)生,從而在空氣中產(chǎn)生聲波,如圖1。

圖像 001.png

圖1  壓電陶瓷蜂鳴片發(fā)聲原理

  本文將應(yīng)用逆壓電效應(yīng)通過(guò)在壓電陶瓷蜂鳴片兩極間施加交變電壓,使其產(chǎn)生振動(dòng)并進(jìn)入工作狀態(tài),然后參考上述標(biāo)準(zhǔn)對(duì)壓電陶瓷蜂鳴片進(jìn)行阻抗、電容值、絕緣電阻、介質(zhì)耐電壓等電性能參數(shù)進(jìn)行測(cè)量。主要工作是通過(guò)對(duì)壓電陶瓷蜂鳴片的阻抗測(cè)量找出其最大、最小阻抗頻率點(diǎn),再以其為準(zhǔn)則確定等效電路模型參數(shù),同時(shí)通過(guò)改變頻率觀察電容值的變化。然后再通過(guò)使用不同線材和不同的連接方式觀察對(duì)壓電陶瓷電容值測(cè)量的影響,最后再進(jìn)行溫度特性、絕緣電阻和介質(zhì)耐電壓的參數(shù)測(cè)量研究其可靠性。

2 測(cè)試研究開(kāi)展

  2.1 壓電阻抗特性確定諧振頻率fr

  壓電振子是經(jīng)過(guò)極化處理的壓電體是彈性體,具有固有振動(dòng)頻率fr。當(dāng)加在壓電振子上的電信號(hào)的頻率等于其固有振動(dòng)頻率fr時(shí),壓電振子的彈性能最大,發(fā)生諧振。此外,它還具有反諧振頻率fa、串聯(lián)諧振頻率fs、并聯(lián)諧振頻率fp、最小阻抗頻率fm、最大阻抗頻率fn等重要的臨界頻率。圖2是壓電振子的等效電路模型。L1是壓電振子動(dòng)態(tài)電感、C0、C1分別為靜電容和動(dòng)態(tài)電容、R1為動(dòng)態(tài)電阻。L1、R1、C1分別于壓電振子的質(zhì)量、內(nèi)摩擦系數(shù)和彈性常數(shù)有關(guān),并非電學(xué)量,只是為了處理方便才模擬成電學(xué)量。模型中只有C0才是電學(xué)量。而壓電振子材料的彈性、壓電和介電常數(shù)都可以通過(guò)測(cè)量壓電振子的集合尺寸、串聯(lián)諧振頻率、材料密度和電容等參數(shù)來(lái)測(cè)定。

圖像 002.png

圖2  傳統(tǒng)壓電振子 

 當(dāng)動(dòng)態(tài)電阻R1為0時(shí),最大導(dǎo)納頻率fm和最小導(dǎo)納頻率fn分別為:

  QQ圖片20161128204516.png

  QQ圖片20161128204519.png

  當(dāng)系統(tǒng)處于fm時(shí),輸出的應(yīng)變振幅和振子上流過(guò)的電流達(dá)到最大值,此時(shí)對(duì)應(yīng)的頻率稱(chēng)為最小阻抗頻率(或稱(chēng)為最大導(dǎo)納頻率)。當(dāng)外加電信號(hào)的頻率繼續(xù)增大,振子輸出的電流減小,阻抗達(dá)到最大時(shí)對(duì)應(yīng)的頻率稱(chēng)為最大阻抗頻率(或最小導(dǎo)納頻率)fn。即當(dāng)動(dòng)態(tài)電阻R1=0時(shí),有fm=fs=fr,fn=fp=fa。而實(shí)際情況下,此近似偏差一般小于1%[6]。壓電振子的阻抗|Z|與頻率的關(guān)系如圖3所示。

圖像 003.png

圖像 004.png

圖3  壓電振子的阻抗|Z|與頻率的關(guān)系

  使用HP公司E4980A CLR測(cè)試儀分別對(duì)標(biāo)稱(chēng)頻率為9 kHz的總厚度0.12 mm尺寸樣品5只和標(biāo)稱(chēng)頻率為6 kHz的總厚度0.15 mm尺寸的樣品5只進(jìn)行掃頻測(cè)量。找出阻抗最小和最大時(shí)的頻率點(diǎn)fm、fn,按標(biāo)準(zhǔn)GB/T 6427-1999中6.1.2.3的測(cè)量方法:使試樣的阻抗最小,此時(shí)頻率為諧振頻率fr,見(jiàn)圖4。

圖像 005.png

圖像 006.png

圖4  蜂鳴片樣品阻抗測(cè)試均值與標(biāo)準(zhǔn)偏差實(shí)驗(yàn)數(shù)據(jù),@測(cè)試電壓1 V

  通過(guò)該測(cè)試可以確定0.12 mm厚度樣品的fm1=8.6 kHz,fn1=8.9 kHz,0.15 mm厚度樣品的諧振頻率為fm2=5.9 kHz,fn2=6.2 kHz。與廠家所給標(biāo)稱(chēng)頻率9 kHz和6 kHz相比較,標(biāo)稱(chēng)頻率更接近fn。

  然后以fm近似代替諧振頻率fr,并通過(guò)提高頻率觀察電容值的變化情況。

  圖5為0.12 mm、0.15 mm樣品的電容值測(cè)試數(shù)據(jù),在諧振頻率fr處是使電壓、電流同相位的,所測(cè)得電容值在皮法級(jí),非常微弱,掃頻測(cè)量數(shù)據(jù)不穩(wěn)定。而此處轉(zhuǎn)換為電感值測(cè)量后可穩(wěn)定顯示,由此也可以證明其諧振頻率值近似一致。

圖像 007.png

圖像 008.png

圖5  某樣品在不同頻率下電容值測(cè)試值,@測(cè)試電壓1 V

  通過(guò)分析圖5數(shù)據(jù),可以看出其電容測(cè)試曲線符合圖3的變化規(guī)律,然后通過(guò)逐漸提高頻率的情況下測(cè)量電容值的數(shù)據(jù)可以看出電容值隨著頻率的升高慢慢趨于穩(wěn)定,并且在相對(duì)高的頻率下電容值的變化區(qū)間越來(lái)越小,通過(guò)實(shí)驗(yàn)數(shù)據(jù)可知,0.12 mm樣品靜電容C0約為11 nF,0.15 mm樣品靜電容C0約為14 nF。

  將以上參數(shù)代入式(1)、式(2)??傻?.12 mm厚度樣品C0=11 nF,C1=1.15 nF,L1=0.63 H;0.15 mm厚度樣品C0=14 nF,C1=0.99 nF,L1=0.35 H。

  此外,通過(guò)對(duì)比諧振頻率點(diǎn)與廠家所標(biāo)識(shí)的頻率,發(fā)現(xiàn)所標(biāo)識(shí)的頻率應(yīng)該是其諧振頻率,只是與實(shí)際測(cè)試值存在偏差,符合行業(yè)標(biāo)準(zhǔn)SJ/T 10709-1996(壓電陶瓷蜂鳴片總規(guī)范)中諧振頻率標(biāo)識(shí)的要求,但是對(duì)于標(biāo)準(zhǔn)中關(guān)于材料、結(jié)構(gòu)、電極形狀等參數(shù),廠家卻并沒(méi)有按標(biāo)準(zhǔn)所要求的格式標(biāo)識(shí)出來(lái)。

  2.2 串、并聯(lián)連接測(cè)試

  本實(shí)驗(yàn)將從兩個(gè)尺寸的壓電陶瓷蜂鳴片(0.12 mm和0.15 mm)中各取兩只樣品進(jìn)行電橋法實(shí)驗(yàn)。首先,分別測(cè)量單只樣品的電容值,然后按照串聯(lián)和并聯(lián)方式連接后進(jìn)行測(cè)量,并與串聯(lián)、并聯(lián)公式結(jié)果進(jìn)行比較。

  串聯(lián)公式如下式(3),則0.12 mm、0.15 mm樣品的串聯(lián)計(jì)算值分別為3.34 nF、2.32 nF。

  QQ圖片20161128204522.png

  并聯(lián)公式如式(4),則0.12 mm、0.15 mm樣品的并聯(lián)計(jì)算值分別為13.35 nF、9.28 nF。

  QQ圖片20161128204526.png

  參考如圖2壓電振子傳統(tǒng)等效電路模型(BVD電路),若簡(jiǎn)單采用并聯(lián)或者串聯(lián)連接,組件諧振頻率偏差未能考慮到,且蜂鳴片之間振子參數(shù)機(jī)械損耗、互感效應(yīng)也未能考慮,因此實(shí)際測(cè)量結(jié)果偏差較大。而通過(guò)表1數(shù)據(jù)可以得出壓電陶瓷的串、并聯(lián)電容參數(shù)還是較符合一般電容器的串、并聯(lián)公式計(jì)算結(jié)果。

圖像 012.png

  2.3 線材寄生電容的影響

  我們通常把分布在導(dǎo)線之間、線圈與機(jī)殼之間以及某些元件之間的分布電容等稱(chēng)為寄生電容。雖然數(shù)值不大,但很多時(shí)候往往是造成干擾的原因之一,特別是在高頻下尤其明顯。為了解連接線材寄生電容對(duì)壓電陶瓷器件的影響,分別選取0.12 mm和0.15 mm兩個(gè)尺寸的壓電陶瓷蜂鳴片作為測(cè)試樣品:選取三種不同芯線徑的多股線和一種芯線徑的鍍銀線作為引線,通過(guò)改變引線長(zhǎng)度來(lái)測(cè)量蜂鳴片的電容值。

圖像 009.png

圖像 010.png

圖6  蜂鳴片連接引線電容測(cè)試

  通過(guò)分析圖6數(shù)據(jù),可以發(fā)現(xiàn)盡管引線所用的線材、線徑、長(zhǎng)度的差異都比較大,但是最后測(cè)量的結(jié)果互相之間的差異卻非常小,對(duì)于來(lái)自引線寄生電容的影響幾乎可以忽略不計(jì)。探究其原因可能有以下兩點(diǎn):

  (1)引線所產(chǎn)生的寄生電容值約皮法級(jí),相對(duì)于在納法級(jí)的樣品電容值而言,是微乎其微的。

  (2)由于實(shí)驗(yàn)樣品使用的是壓電陶瓷蜂鳴片,因此測(cè)試頻率在可聽(tīng)聲范圍,并不高。而恰好寄生電容在低頻下的影響并不明顯,這也是導(dǎo)致最后測(cè)出的結(jié)果與不用引線測(cè)出的結(jié)果相差甚微的原因之一。

  綜合來(lái)看來(lái)自引線的寄生電容,對(duì)于測(cè)量壓電陶瓷蜂鳴片這類(lèi)壓電陶瓷產(chǎn)品的電容值來(lái)說(shuō)影響幾乎是可以忽略不計(jì)的。

  2.4 溫度變化對(duì)電容值影響

  選0.12 mm、0.15 mm、0.27 mm三種厚度的壓電陶瓷蜂鳴片,利用高低溫試驗(yàn)箱MC-711進(jìn)行-55 ℃、25 ℃、65 ℃下三個(gè)溫度點(diǎn)在諧振頻率fr附近進(jìn)行測(cè)量,觀察溫度變化對(duì)壓電陶瓷電容值的影響。

  通過(guò)圖7測(cè)試結(jié)果,可以看出在低溫下電容值的一致性不理想,但是在常溫及以上電容值的一致性卻非常理想,該情況在三種尺寸的樣品中均能體現(xiàn),而且互相之間的變化趨勢(shì)也基本相同,在常溫下的電容值也相對(duì)比較穩(wěn)定。由此推測(cè)產(chǎn)品的溫度特性應(yīng)該是與其制造材料、生產(chǎn)工藝和配方有非常大的關(guān)系。但是由于本實(shí)驗(yàn)的溫度測(cè)量點(diǎn)相對(duì)較少,未能更充分地反應(yīng)溫度變化對(duì)電容值的影響,所以本實(shí)驗(yàn)的數(shù)據(jù)研究意義并不大,更多只作為初步的參考作用,為后續(xù)對(duì)這方面更深入的探究和實(shí)驗(yàn)做基礎(chǔ)。

圖像 011.png


  2.5 絕緣電阻和介質(zhì)耐電壓測(cè)試

  選取0.12 mm、0.15 mm、0.27 mm這3種尺寸的壓電陶瓷蜂鳴片作為實(shí)驗(yàn)樣品,使用HP公司的4339B高阻表分別測(cè)量絕緣電阻,其中0.12 mm和0.15 mm的使用100 V直流電壓測(cè)量,0.27 mm的使用500 V直流測(cè)量,測(cè)試時(shí)間1 min。測(cè)試結(jié)果如表2、表3。

圖像 013.png

圖像 014.png

  通過(guò)對(duì)表2、表3數(shù)據(jù)的分析后發(fā)現(xiàn)所有尺寸樣品的絕緣電阻參數(shù)符合行業(yè)標(biāo)準(zhǔn)SJ/T 10709-1996(壓電陶瓷蜂鳴片總規(guī)范)中對(duì)絕緣性能的要求,對(duì)不同尺寸的介質(zhì)耐電壓數(shù)據(jù)進(jìn)行比對(duì)后發(fā)現(xiàn),尺寸更大的產(chǎn)品其絕緣性能更好,可靠性更高。

3 結(jié)論

  本文通過(guò)實(shí)驗(yàn)得到了五個(gè)方面的結(jié)論:

  (1)在一級(jí)近似下,壓電振子的等效電路模型參數(shù)可以通過(guò)最小阻抗頻率fm和最大阻抗頻率fn計(jì)算得到。

  (2)通過(guò)實(shí)驗(yàn)驗(yàn)證了壓電陶瓷片是電容性元件,并且通過(guò)改變串并聯(lián)的方式找出了其疊加規(guī)律與一般電容器一致,為初次接觸壓電陶瓷這類(lèi)材料的人群提供了準(zhǔn)確的參考依據(jù)。

  (3)通過(guò)使用不同的線材、線徑和長(zhǎng)度的引線連接壓電陶瓷蜂鳴片與測(cè)量設(shè)備,研究引線產(chǎn)生寄生電容對(duì)壓電陶瓷蜂鳴片的影響,可知引線的影響在可聽(tīng)聲頻范圍內(nèi)微乎其微,對(duì)選取樣品的電容值并沒(méi)有產(chǎn)生多大的影響。

  (4)通過(guò)對(duì)壓電陶瓷蜂鳴片進(jìn)行溫度特性的測(cè)量,發(fā)現(xiàn)其在常溫下能獲得較穩(wěn)定的工作狀態(tài),因此若想提高壓電陶瓷蜂鳴片的可靠性,應(yīng)該盡量使其工作在常溫環(huán)境下。

  (5)最后通過(guò)對(duì)壓電陶瓷蜂鳴片絕緣電阻和介質(zhì)耐電壓參數(shù)的測(cè)量了解了這些參數(shù)對(duì)產(chǎn)品可靠性的影響,并且將其結(jié)果與國(guó)家相關(guān)標(biāo)準(zhǔn)所要求的對(duì)比,發(fā)現(xiàn)產(chǎn)品的設(shè)計(jì)與制造僅僅只是有部分參數(shù)按照相關(guān)標(biāo)準(zhǔn)執(zhí)行,雖然目前我國(guó)對(duì)壓電陶瓷材料的標(biāo)準(zhǔn)大多數(shù)并非強(qiáng)制標(biāo)準(zhǔn),但是隨著壓電陶瓷材料的使用越來(lái)越廣泛,普及程度不斷提高,對(duì)其標(biāo)準(zhǔn)化程度和可靠性要求必然需要大幅度提高。

  本實(shí)驗(yàn)成果可為研究產(chǎn)品可靠性和制定相關(guān)標(biāo)準(zhǔn)的技術(shù)人員提供一定參考依據(jù),為我國(guó)標(biāo)準(zhǔn)化工作和提升國(guó)產(chǎn)產(chǎn)品可靠性添磚加瓦。

  參考文獻(xiàn)

  [1] 賃敦敏,肖定全,朱建國(guó),等.從發(fā)明專(zhuān)利看無(wú)鉛壓電陶瓷的研究與發(fā)展——無(wú)鉛壓電陶瓷20年發(fā)明專(zhuān)利分析之一[J].功能材料,2003(34):250-253.

  [2] 吳一輝,楊宜民,王立鼎.壓電定位元件的非線性及其線性化控制原理[J].功能材料與器件學(xué)報(bào),1996,2(3):166-171.

  [3] 張濤,孫立寧,蔡鶴皋.壓電陶瓷基本特性研究[J].光學(xué)精密工程,1998,6(5):26-32.

  [4] 奕承萍,許玉格.陶瓷驅(qū)動(dòng)器應(yīng)用中的滯環(huán)特性及研究進(jìn)展[J].自動(dòng)化技術(shù)與應(yīng)用,2003,22(7):1-4.

  [5] 賈宏光,吳一輝,王立鼎.壓電元件非線性特性研究的進(jìn)展[J].壓電與聲光,2001,23(2):116-119.

  [6] 張沛霖,張仲淵.壓電測(cè)量[M].北京:國(guó)防工業(yè)出版社,1983.

  [7] 劉欣.壓電陶瓷(PZT)特性的分析及實(shí)驗(yàn)測(cè)試[D].昆明:昆明理工大學(xué),2007.

  [8] 葉會(huì)英,禹延光.壓電振子復(fù)參數(shù)等效電路模型研究[J].電子元件與材料,2004,23(3):10-12.

  


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。