《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 測試測量 > 設(shè)計應(yīng)用 > 基于Mie散射低濃度煙塵檢測系統(tǒng)設(shè)計
基于Mie散射低濃度煙塵檢測系統(tǒng)設(shè)計
2018年電子技術(shù)應(yīng)用第1期
孫靈芳1,2,張召鵬1
1.東北電力大學(xué) 自動化工程學(xué)院,吉林 吉林132012; 2.東北電力大學(xué) 節(jié)能與測控技術(shù)研究中心,吉林 吉林132012
摘要: 針對我國低濃度煙塵排放要求,以Mie散射為理論基礎(chǔ),設(shè)計了一款低成本、高精度的低濃度煙塵檢測系統(tǒng)。通過理論分析獲得散射光強(qiáng)與煙塵濃度呈線性關(guān)系,設(shè)計了激光發(fā)射單元、信號接收單元以及STM32數(shù)據(jù)處理單元,分析激光調(diào)制驅(qū)動原理及微弱信號選頻放大原理。利用LabVIEW軟件編寫上位機(jī)程序,通過上位機(jī)前面板對檢測數(shù)據(jù)進(jìn)行實時顯示。實驗結(jié)果表明:該系統(tǒng)靈敏度高、響應(yīng)速度快、重復(fù)性好,并且可以長時間地在線測量,具有很好的實用性。
中圖分類號: TP274
文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.172221
中文引用格式: 孫靈芳,張召鵬. 基于Mie散射低濃度煙塵檢測系統(tǒng)設(shè)計[J].電子技術(shù)應(yīng)用,2018,44(1):72-75.
英文引用格式: Sun Lingfang,Zhang Zhaopeng. The design of low-concentration dust detection system based on Mie scattering theory[J]. Application of Electronic Technique,2018,44(1):72-75.

The design of low-concentration dust detection system based on Mie scattering theory
Sun Lingfang1,2,Zhang Zhaopeng1
1.School of Automation Engineer,Northeast Electric Power University,Jilin 132012,China; 2.Energy Conservation & Measure-Control Center,Northeast Electric Power University,Jilin 132012,China
Abstract: According to the requirement of low-concentration dust emission in China, this paper designed a low-cost and high-precision dust detection system based on Mie scattering. Through theoretical analysis, the relationship between the intensity of scattered light and the concentration of soot is obtained. The laser emitting unit, signal receiving unit and STM32 data processing unit are designed. The driving principle of laser modulation and the principle of selective signal amplification of weak signal are analyzed. The host computer program is written with LabVIEW software, and the test data are displayed on the front panel of the host computer. The experimental results show that this system has high sensitivity, fast response, good repeatability, and can be measured online for a long time, which means this system has good practicability.
Key words : low-concentration dust;Mie scattering;linear fitting;STM32;host computer

0 引言

    燃煤電廠發(fā)電過程中會產(chǎn)生大量的煙塵顆粒物,經(jīng)過濾除塵后煙塵顆粒物的濃度低、粒徑小,在空氣中漂浮的時間長[1],通過呼吸進(jìn)入人體內(nèi),會對人的健康造成很大傷害,也會對無塵度要求較高的工業(yè)生產(chǎn)造成不良影響[2]。因此,設(shè)計一款性能穩(wěn)定、能夠?qū)崟r監(jiān)測低濃度煙塵的系統(tǒng)具有重要意義。

    系統(tǒng)以Mie散射為理論基礎(chǔ),它表述了光在微小顆粒物表面發(fā)生散射的規(guī)律[3]。相比較其他原理的測量方法,基于光散射法的檢測設(shè)備具有自動化程度高、儀器體積小、可以直接獲得測量結(jié)果等優(yōu)點(diǎn)[4],本文結(jié)合激光調(diào)制、微弱信號處理以及嵌入式等技術(shù),設(shè)計了一款能夠在線測量的低濃度煙塵檢測系統(tǒng)。

1 Mie散射檢測原理

    經(jīng)過濾除塵后,煙塵粒徑多數(shù)集中在0.2~10 μm之間,形狀多為球體[5]。此時粒子粒徑遠(yuǎn)遠(yuǎn)小于粒子間的距離,這樣就可以忽略粒子間的散射,把待測區(qū)的散射光強(qiáng)看成一個整體[6],符合Rosin-Rammler分布,其分布函數(shù)為:

    ck6-gs1.gif

式中x和N是描述煙塵粒子分布的特征參數(shù),x表示為粒徑大于x的粒子數(shù)占粒子體積的36.8%,N大小反映了粒子粒徑的分布程度;N越大表示粒子粒徑越集中[7];d為粒子直徑,T是分布函數(shù),其導(dǎo)數(shù)的意義表示粒徑為d的煙塵顆粒在整個煙塵顆粒群中的比例,公式為:

    ck6-gs2.gif

    若待測區(qū)的體積為V,煙塵質(zhì)量濃度為A mg/m3,密度為ρ,煙塵顆??傮w積為V煙塵,則關(guān)系式如下:

ck6-gs3-6.gif

    對于確定的煙塵排放源,σ中的各參數(shù)為已知量,則可由式(6)得出總散射光強(qiáng)I與煙塵濃度A為一次線性關(guān)系,這也是本檢測系統(tǒng)的理論依據(jù)。

2 系統(tǒng)設(shè)計方案

    本系統(tǒng)主要由四部分組成:激光發(fā)射單元、信號接收單元、STM32數(shù)據(jù)處理單元以及上位機(jī)軟件。激光器在調(diào)制信號驅(qū)動下發(fā)出調(diào)制激光,通過擴(kuò)束鏡照射到待測煙塵區(qū)發(fā)生散射,散射光通過聚光鏡匯集到光電探測器轉(zhuǎn)換為電信號,電信號經(jīng)過放大濾波、A/D轉(zhuǎn)換進(jìn)入STM32處理單元進(jìn)行數(shù)據(jù)處理,最后通過串口送入上位機(jī)進(jìn)行實時顯示并存儲。系統(tǒng)設(shè)計方案如圖1所示。

ck6-t1.gif

2.1 激光發(fā)射單元

    激光發(fā)射單元主要包括:LD激光器、基準(zhǔn)電壓源電路、信號調(diào)制電路、激光器電流驅(qū)動電路。

    系統(tǒng)選用波長為650 nm的LD激光器作為激光光源,此時激光波長和煙塵粒徑大小為同一數(shù)量級,滿足Mie散射的理論要求[8]?;鶞?zhǔn)源選用LM399高精度基準(zhǔn)電壓源[9],基準(zhǔn)電壓為6.95 V,通過電位器分壓和低通濾波器消噪,獲得3 V直流偏置電壓。信號調(diào)制選用高頻精密函數(shù)信號發(fā)生器MAX038,產(chǎn)生200 Hz頻率的正弦信號[10],經(jīng)濾波后輸出2 V調(diào)制電壓。電路中的AR1和AR2為LM393電壓跟隨器,用于提高電路的輸入阻抗以及防止前后級的互相影響。直流偏置電壓Vb和信號調(diào)制電壓Vm通過低噪聲、零漂移的OPA188運(yùn)放芯片疊加,產(chǎn)生5 V激光調(diào)制電壓信號。恒流源電路是由運(yùn)放AR4和AR5組成的負(fù)反饋電路,電路中利用NPN型三極管的電流放大特性進(jìn)行擴(kuò)流輸出,最終獲得40 mA激光驅(qū)動電流。驅(qū)動電路如圖2所示。

ck6-t2.gif

2.2 信號接收單元

    信號接收單元主要包括:光電探測器、I-V轉(zhuǎn)換放大電路、濾波電路。

    系統(tǒng)選用型號為S1787-12高速響應(yīng)硅光電二極管(PIN)作為探測器,在波長為650 nm時感光靈敏度可達(dá)最高值0.4 A/W。經(jīng)過光電探測器轉(zhuǎn)換的電信號十分微弱,對此信號的處理不能只是簡單地放大,而是在放大有用信號的同時能夠具備抑制噪聲的能力。前置I-V轉(zhuǎn)換電路的設(shè)計是為了方便對檢測信號進(jìn)行處理,但轉(zhuǎn)換中會產(chǎn)生一定的噪聲和偏置電流,可能導(dǎo)致后續(xù)放大電路產(chǎn)生誤差,為了消除這種影響,電路采用T型反饋網(wǎng)絡(luò),轉(zhuǎn)換芯片選用高精度OPA277運(yùn)算放大器。微弱信號放大部分,設(shè)計二級放大電路,放大倍數(shù)可達(dá)100×10倍。但實際上放大器本身也存在一定的噪聲,所以放大電路可通過可調(diào)電阻R21根據(jù)實際測量靈敏度來確定最合適的放大倍數(shù)。偏置調(diào)節(jié)的作用是通過減法器給交流信號疊加直流偏移。電路如圖3所示。

ck6-t3.gif

    濾波電路對提高整個信號檢測單元的信噪比起著決定性的作用,設(shè)計二級二階無限增益多路負(fù)反饋帶通濾波電路,第一級電路中心頻率為202 Hz,第二級電路通過R29調(diào)整為200 Hz,運(yùn)算放大器選用噪聲低、穩(wěn)定性好的AD8039芯片,采用反相接法,反相輸入端的開環(huán)增益無限大,可視為虛地,輸出端由電阻和電容構(gòu)成兩條反饋支路,理論上該電路的品質(zhì)因數(shù)Q可以達(dá)到理想值。電路如圖4所示。

ck6-t4.gif

2.3 STM32數(shù)據(jù)處理單元

    STM32數(shù)據(jù)處理單元主要包括:STM32F103、供電電路、JTAG程序接口、A/D轉(zhuǎn)換輸入接口、串口模塊、數(shù)據(jù)存儲模塊。

    處理器選用的是STM32F103ZET6芯片,此芯片具有高速嵌入式存儲器以及先進(jìn)的通信接口[11]。供電電源選用AX1117-3.3 V芯片;JTAG程序下載接口用于系統(tǒng)硬件仿真及在線調(diào)制功能;串口模塊選用RS232芯片實現(xiàn)單片機(jī)與上位機(jī)的通信;數(shù)據(jù)存儲模塊選用的是電可擦除存儲芯片F(xiàn)M24C02,可以實現(xiàn)數(shù)據(jù)存儲和壓縮,以便后續(xù)分析及處理。結(jié)構(gòu)框圖如圖5所示。

ck6-t5.gif

2.4 上位機(jī)軟件設(shè)計

    本系統(tǒng)上位機(jī)利用LabVIEW軟件開發(fā),上位機(jī)界面中設(shè)計了數(shù)據(jù)波形與數(shù)值顯示窗口、串口調(diào)試窗口以及數(shù)據(jù)存儲控鍵。顯示界面如圖6所示。

ck6-t6.gif

    圖中曲線表示未加入煙塵的檢測結(jié)果,為了便于觀察輸入電壓量的變化,縱坐標(biāo)的量程大小設(shè)置為可調(diào),量程范圍0~3.3 V。

3 實驗結(jié)果

    為了驗證低濃度煙塵檢測裝置的靈敏度與準(zhǔn)確性,本文進(jìn)行了靈敏度及曲線標(biāo)定實驗。實驗選用鍋爐燃燒產(chǎn)生的粉煤灰顆粒,實驗環(huán)境為自制的圓柱形模擬煙道,煙道的體積為0.785 m3,可以通過加入不同質(zhì)量的粉煤灰顆粒物求出煙道內(nèi)的粉煤灰濃度,作為標(biāo)準(zhǔn)濃度,利用標(biāo)準(zhǔn)濃度和實際測量值進(jìn)行比較計算誤差。

3.1 靈敏度實驗

    安裝實驗裝置,通過煙道頂端小口向內(nèi)散落少量粉煤灰顆粒物,經(jīng)過激光光束時會產(chǎn)生散射,實驗結(jié)果如圖7所示。

ck6-t7.gif

    從圖中可以看到,當(dāng)粉煤灰經(jīng)過激光光束時,探測器接收電信號會有明顯的變大,隨著粉煤灰的下落,電信號又逐漸恢復(fù)到初始值,說明系統(tǒng)對低濃度粉煤灰顆粒物的后向散射信號敏感性較好,可以用于低濃度煙塵測量。

3.2 曲線標(biāo)定實驗

    為了檢驗系統(tǒng)的準(zhǔn)確性以及驗證光散射產(chǎn)生的模擬電壓量與粉煤灰濃度成一次線性關(guān)系,設(shè)計兩組不同遞增量的測量實驗。粉煤灰質(zhì)量在0~250 mg范圍內(nèi)遞增量設(shè)定為25 mg,在250~750 mg范圍內(nèi)遞增量設(shè)定為50 mg,每組質(zhì)量測量時間為200 s,每秒記錄一個數(shù)據(jù),計算200個數(shù)據(jù)的平均值,每次實驗后要對模擬煙道進(jìn)行清理再進(jìn)行下次實驗。實驗結(jié)果如表1所示。

ck6-b1.gif

    對表1中粉煤灰濃度與輸出電壓平均值進(jìn)行線性擬合,擬合標(biāo)定曲線如圖8所示。從圖中可以看出,粉煤灰濃度與電壓平均值有著明顯的一次線性關(guān)系,設(shè)線性方程為y=kx+b,通過線性最小二乘法計算可得曲線標(biāo)定方程為:

    ck6-gs7.gif

式中,y表示煙塵濃度值(mg/m3),x表示輸出電壓值(mV)。

ck6-t8.gif

    首先對表中每組200個測量值計算平均誤差,可得誤差范圍為0.31%~1.26%,變化范圍較小,則系統(tǒng)重復(fù)性良好;再通過標(biāo)定曲線計算測量濃度與標(biāo)準(zhǔn)濃度之間的誤差為4.42%。產(chǎn)生誤差的主要原因有:(1)人為因素造成,每次測量結(jié)束后清洗過程不仔細(xì)造成顆粒物殘留;(2)每次加入的粉煤灰質(zhì)量一定,但顆粒物粒徑大小是在一定范圍內(nèi)變化的,這樣也會影響輸出的電壓值。

4 結(jié)論

    本文以Mie散射理論為基礎(chǔ),設(shè)計一款可以用于低濃度煙塵檢測的系統(tǒng)。通過實驗驗證了此系統(tǒng)在低濃度情況下有良好的靈敏度和重復(fù)性,利用虛擬儀器技術(shù)設(shè)計了上位機(jī)顯示界面,能夠?qū)崟r監(jiān)測煙塵濃度變化。實驗結(jié)果表明:煙塵濃度與輸出電壓量呈明顯的線性關(guān)系,測量濃度與標(biāo)準(zhǔn)濃度的偏差為4.42%,在國際標(biāo)準(zhǔn)誤差規(guī)定的范圍內(nèi),可以應(yīng)用于燃煤電廠低濃度煙塵排放的測量。

參考文獻(xiàn)

[1] 賀晉瑜,燕麗,雷宇,等.我國燃煤電廠顆粒物排放特征[J].環(huán)境科學(xué)研究,2015,28(2):862-868.

[2] 梁秀進(jìn),陳劍,孟瑩,等.4個典型煤種的可吸入顆粒物排放研究[J].中國電機(jī)工程學(xué)報,2013,33(30):117-121.

[3] 張偉,路遠(yuǎn),杜石明,等.球形粒子Mie散射特性分析[J].光學(xué)技術(shù),2010,36(6):936-939.

[4] 葉超,孟睿,葛寶臻.基于光散射的粒子測量方法綜述[J].激光與紅外,2015,45(4):344-347.

[5] 張軍,鄭成航,張涌新,等.某1000MV燃煤機(jī)組超低排放電廠煙氣污染物排放測試及其特性分析[J].中國電機(jī)工程學(xué)報,2016,36(5):1310-1314.

[6] 吳玉渠.基于光散射的煙塵濃度檢測裝置及實驗研究[D].哈爾濱:哈爾濱理工大學(xué),2013.

[7] GONZALEZ-TELLO P,CAMACHO F,VICARIA J M,et al.A modified Nukiyama–Tanasawa distribution function and a Rosin-Rammler model for the particle-size-distribution analysis[J].Power Technology,2008,186(3):278-281.

[8] 楊穎,黃竹青,曹小玲.偏振狀態(tài)下微粒的Mie散射特性研究[J].激光與紅外,2013,43(12):1376-1379.

[9] 陳太洪.基于LM399的高精密度穩(wěn)壓電源[J].工礦自動化,2006,42(3):42-44.

[10] 黃慶彩,祖靜,裴東興.基于MAX038的函數(shù)信號發(fā)生器的設(shè)計[J].儀器儀表學(xué)報,2004,25(4):321-322.

[11] 王晨輝,吳悅,楊凱.基于STM32的多通道數(shù)據(jù)采集系統(tǒng)[J].電子技術(shù)應(yīng)用,2016,42(1):51-53. 

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。