《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 電源技術(shù) > 新品快遞 > 開關(guān)電源關(guān)鍵器件的熱設(shè)計(jì)

開關(guān)電源關(guān)鍵器件的熱設(shè)計(jì)

2018-08-01

   電源模塊發(fā)熱問題會(huì)嚴(yán)重危害模塊的可靠性,使產(chǎn)品的失效率將呈指數(shù)規(guī)律增加,電源模塊發(fā)熱嚴(yán)重怎么辦?本文從模塊的熱設(shè)計(jì)角度出發(fā),介紹各類低溫升、高可靠性的電源設(shè)計(jì)及應(yīng)用解決方案。

  高溫對功率密度高的電源模塊的可靠性影響極其大,高溫會(huì)導(dǎo)致電解電容的壽命降低、變壓器漆包線的絕緣特性降低、晶體管損壞、材料熱老化、低熔點(diǎn)焊縫開裂、焊點(diǎn)脫落、器件之間的機(jī)械應(yīng)力增大等現(xiàn)象。有統(tǒng)計(jì)資料表明,電子元件溫度每升高2℃,可靠性下降10%。

  一、關(guān)鍵器件的損耗

  表 1是開關(guān)電源關(guān)鍵器件的熱損耗根源,了解器件發(fā)熱原因,為散熱設(shè)計(jì)提供理論基礎(chǔ),能快速定位設(shè)計(jì)方案。

  表 1 主要元器件損耗根源

1.png

  二、開關(guān)電源熱設(shè)計(jì)

  從上表了解關(guān)鍵發(fā)熱器件和發(fā)熱的原因后,可以從以下兩方面入手:

  1、從電路結(jié)構(gòu)、器件上減少損耗。

  如采用更優(yōu)的控制方式和技術(shù)、高頻軟開關(guān)技術(shù)、移相控制技術(shù)、同步整流技術(shù)等,另外就是選用低功耗的器件,減少發(fā)熱器件的數(shù)目,加大加粗印制線的寬度,提高電源的效率。

  a.方案選擇優(yōu)化熱設(shè)計(jì)

  圖 1是同一個(gè)產(chǎn)品的熱效果圖,圖 1 中的A圖采用軟驅(qū)動(dòng)技術(shù)方案,圖 1 中的B圖采用直接驅(qū)動(dòng)技術(shù)方案,輸入輸出條件一樣,工作30分鐘后測試兩個(gè)產(chǎn)品的關(guān)鍵器件溫度,如表 2所示, A圖關(guān)鍵器件MOS的溫度降幅是B圖的32%,關(guān)鍵器件溫度降低同時(shí),提高了產(chǎn)品的可靠性,e所以采用高頻軟開關(guān)技術(shù)或者軟驅(qū)動(dòng)技術(shù),能大幅度降低關(guān)鍵器件的表面溫度。

2.jpg

  圖 1  采用不同驅(qū)動(dòng)方案后的熱效果圖

  表 2 主要元器件損耗根源

3.png

  b.器件選擇優(yōu)化熱設(shè)計(jì)

  器件的選擇不僅需要考慮電應(yīng)力,還要考慮熱應(yīng)力,并留有一定降額余量。圖2為一些元件降額曲線,隨著表面溫度增加,其額定功率會(huì)有所降低。

  圖2 降額曲線

4.gif

  元器件的封裝對器件的溫升有很大的影響。如由于工藝的差異,DFN封裝的MOS管比DPAK(TO252)封裝的MOS管更容易散熱。前者在同樣的損耗條件下,溫升會(huì)比較小。一般封裝越大的電 阻,其額定功率也會(huì)越大,在同樣的損耗的條件下,表面溫升會(huì)比較小。

  有時(shí)電路參數(shù)和性能看似正常,但實(shí)際上隱藏很大的問題。如圖3所示,某電路基本性能沒有問題,但在常溫下,用紅外熱成像儀一測, MOS管的驅(qū)動(dòng)電阻表面溫度居然達(dá)到95.2℃。長期工作或高溫環(huán)境下,極易出現(xiàn)電阻燒壞、模塊損壞的問題。通過調(diào)整電路參數(shù),降低電阻的歐姆熱損耗,且將電阻封裝由0603改成0805,大大降低了表面溫度。

5.png

  圖3驅(qū)動(dòng)電阻表面溫度

  c.PCB設(shè)計(jì)優(yōu)化熱設(shè)計(jì)

  PCB的銅皮面積、銅皮厚度、板材材質(zhì)、PCB層數(shù)都影響到模塊散熱。常用板材FR4(環(huán)氧樹脂)是很好的導(dǎo)熱材料,PCB上元器件的熱量可以通過PCB散熱。特殊應(yīng)用情況下,也有采用鋁基板或陶瓷基板等熱阻更小的板材。

  PCB的布局布線也要考慮到模塊的散熱:a).發(fā)熱量大的元件要避免扎堆布局,盡量保持板面熱量均勻分布;b).熱敏感的元件尤其應(yīng)該遠(yuǎn)離熱量源;c).必要時(shí)采用多層PCB;d).功率元件背面敷銅平面散熱,并用“熱孔”將熱量從PCB的一面?zhèn)鞯搅硪幻妗?/p>

  如圖4所示,上面兩圖為沒有采用此方法時(shí),MOS管表面溫度和背面PCB的溫度;下面兩圖為采用“背面敷銅平面加熱孔”方法后,MOS管表面溫度和背面銅平面的溫度,可以看出:

  lMOS管表面溫度由98.0℃降低了22.5℃;

  lMOS管與背面的銅平面的溫差大大減小,熱孔的傳熱性能良好。

6.gif

  圖4 背面敷銅加熱孔的散熱效果

  2、運(yùn)用更有效的散熱技術(shù)。

  利用傳導(dǎo)、輻射、對流技術(shù)將熱量轉(zhuǎn)移,這包括采用散熱器、風(fēng)冷(自然對流和強(qiáng)迫風(fēng)冷)、液冷(水、油)、熱電致冷、熱管等方法。

  熱設(shè)計(jì)時(shí),還須注意:

  a.對于寬壓輸入的電源模塊,高壓輸入和低壓輸入的發(fā)熱點(diǎn)和熱量分布完全不同,需全面評估。短路保護(hù)時(shí)的發(fā)熱點(diǎn)和熱量分布也要評估;

  b.在灌封類電源模塊中,灌封膠是一種良好的導(dǎo)熱的材料。模塊內(nèi)部元件的表面溫升會(huì)進(jìn)一步降低。

  除了上述提及的電源熱設(shè)計(jì)技巧之外,還可以直接選用高性能的隔離DC-DC電源模塊,可快速為系統(tǒng)提供高靠性的供電隔離解決方案。致遠(yuǎn)電子基于近二十年的電源設(shè)計(jì)經(jīng)驗(yàn)積累,自主研發(fā)設(shè)計(jì)自主電源IC,打造全工況優(yōu)選定壓DC-DC電源P系列,滿足所有工況需求,為用戶提供穩(wěn)定、優(yōu)質(zhì)的供電解決方案。致遠(yuǎn)電子自主電源IC相較于傳統(tǒng)方案,內(nèi)部集成短路保護(hù)、過溫保護(hù)等保護(hù)功能,具備更高的集成度與可靠性,保證全工況高效、穩(wěn)定供電,能夠?yàn)橛脩鬒/O及通信隔離等應(yīng)用提供標(biāo)準(zhǔn)、可靠的供電解決方案。

7.png


本站內(nèi)容除特別聲明的原創(chuàng)文章之外,轉(zhuǎn)載內(nèi)容只為傳遞更多信息,并不代表本網(wǎng)站贊同其觀點(diǎn)。轉(zhuǎn)載的所有的文章、圖片、音/視頻文件等資料的版權(quán)歸版權(quán)所有權(quán)人所有。本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無法一一聯(lián)系確認(rèn)版權(quán)者。如涉及作品內(nèi)容、版權(quán)和其它問題,請及時(shí)通過電子郵件或電話通知我們,以便迅速采取適當(dāng)措施,避免給雙方造成不必要的經(jīng)濟(jì)損失。聯(lián)系電話:010-82306118;郵箱:aet@chinaaet.com。