文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2020.12.010
引用格式: 馮婷婷,葛華勇,孫家慧. 一種基于SSD與FRN相結合的密集連接行人檢測算法[J].信息技術與網(wǎng)絡安全,2020,39(12):56-60,66.
0 引言
行人檢測作為計算機視覺技術的重要分支和智能化產(chǎn)品的核心技術,受到了學術界和工業(yè)界的廣泛關注,其能夠從圖像或視頻中識別出行人,并給出其具體的位置,在車輛輔助駕駛和行人重識別技術等方面有巨大的研究價值和應用前景。行人檢測作為車輛輔助駕駛技術中不可或缺的一部分,可以及時檢測出車輛前方的行人并針對實際狀況及時提醒司機或者緊急制動,從而避免交通事故的發(fā)生;在刑偵工作中,刑偵人員經(jīng)常要瀏覽多個攝像頭中的視頻,此時先進行行人檢測判斷視頻中是否存在行人,把視頻中的行人篩選出來,再利用行人重識別技術查找某個特定的行人在哪些攝像頭曾經(jīng)出現(xiàn)過,可為刑偵工作帶來便利。
近十幾年間,基于深度學習的行人檢測技術取得了巨大進步,能夠自動學習從圖像像素中提取的基于邊緣的低級特征和基于語義信息的高級特征。其分為兩階段檢測算法和單階段檢測算法。在兩階段檢測算法中,文獻[1]提出了基于區(qū)域的卷積神經(jīng)網(wǎng)絡(Region based Convolutional Neural Network,R-CNN),文獻[2]提出了空間金字塔池化(Spatial Pyramid Pooling,SPP)網(wǎng)絡,文獻[3]提出了快速基于區(qū)域的卷積網(wǎng)絡方法(Fast-RCNN),文獻[4-5]提出了Faster-RCNN。這些目標檢測算法的訓練過程步驟繁瑣,檢測速度慢,沒有達到實時的檢測標準?;诖耍訰EDMON J[6]提出的統(tǒng)一實時目標檢測框架(You only look once,Yolo)和以Liu Wei[7]提出的單階段多尺度檢測器(Single Shot MultiBox Detector,SSD)框架為代表的單階段檢測算法由此產(chǎn)生。Yolo存在定位精度、召回率等較低的問題,泛化能力相對較弱,為了解決該算法的缺陷,2016年Liu Wei等提出SSD算法進行多尺度檢測,在保證速度的同時提高了檢測精度,但是其對于小目標檢測不精準,加之在實際生活中,由于行人穿著、姿態(tài)、尺度、視角、光照和復雜背景等多方面原因,在檢測精度及速度方面的提高仍是研究重點。由此針對行人多尺度問題,本文提出一種FRN提升模型性能的密集連接的SSD行人檢測算法,嘗試引入不依賴批尺寸大小的上下文語義信息的多層特征融合的密集連接網(wǎng)絡結構,結合行人檢測任務特點進行優(yōu)化與改進。
本文詳細內(nèi)容請下載:http://theprogrammingfactory.com/resource/share/2000003230
作者信息:
馮婷婷,葛華勇,孫家慧
(東華大學 信息科學與技術學院,上海201620)