《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計應(yīng)用 > 基于DeepLabv3的隨機褶皺防偽圖案識別研究
基于DeepLabv3的隨機褶皺防偽圖案識別研究
信息技術(shù)與網(wǎng)絡(luò)安全
陳 雨1,陳桂雄1,周雄圖1,2,張永愛1,2,林志賢1,2,吳朝興1,2,郭太良1,2
(1.福州大學(xué) 物理與信息工程學(xué)院,福建 福州350116; 2.中國福建光電信息科學(xué)與技術(shù)創(chuàng)新實驗室,福建 福州350116)
摘要: 針對現(xiàn)有防偽技術(shù)可靠性較低、容易被仿制、防偽成本高昂等問題,基于DeepLabv3,提出一種由熱膨脹系數(shù)失配產(chǎn)生壓縮應(yīng)力形成隨機褶皺防偽標(biāo)識圖案的識別方法。具體采用深度卷積網(wǎng)絡(luò)分類算法中DeepLabv3進行分類識別,通過優(yōu)化全連接層并設(shè)置不同的神經(jīng)元節(jié)點,提高識別網(wǎng)絡(luò)的分類準(zhǔn)確率,縮減訓(xùn)練時間,訓(xùn)練準(zhǔn)確率達(dá)96.58%,獲得了能對褶皺紋理圖案精準(zhǔn)識別的網(wǎng)絡(luò)模型,實現(xiàn)具有安全性的防偽目的。
中圖分類號: TP391
文獻標(biāo)識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.02.007
引用格式: 陳雨,陳桂雄,周雄圖,等. 基于DeepLabv3的隨機褶皺防偽圖案識別研究[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,40(2):39-44.
Research on the recognition of anti-counterfeiting pattern based on DeepLabv3
Chen Yu1,Chen Guixiong1,Zhou Xiongtu1,2,Zhang Yongai1,2,Lin Zhixian1,2,Wu Chaoxing1,2,Guo Tailiang1,2
(1.College of Physics and Information Engineering,F(xiàn)uzhou University,F(xiàn)uzhou 350116,China; 2.Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China,F(xiàn)uzhou 350116,China)
Abstract: In view of the problems of anti-counterfeiting technology, such as cloneable, low reliability, and high cost, this paper proposed an identification method for random wrinkle formed by compressive stress caused by the mismatch of thermal expansion index. The paper used DeepLabv3, a edge of deep convolution network classification algorithm, for classification and recognition. Through optimizing the full connectivity layer and setting different neuron nodes, the classification accuracy of recognition network was improved, the training time was reduced, the training accuracy rate was as high as 96.58%, the network model for accurate recognition of wrinkle texture pattern was acquired, and the security purpose of anti-counterfeiting was realized.
Key words : anti-counterfeiting;deep learning;DeepLabv3;image classification Artificial Intelligence

0 引言

         市場中假冒產(chǎn)品的存在會對國家、社會和個人帶來巨大經(jīng)濟損失,防偽成為應(yīng)用廣泛的反制技術(shù)。由于整個防偽市場不規(guī)范,防偽技術(shù)產(chǎn)品水平偏低,妨礙了市場的健康發(fā)展,公眾對防偽產(chǎn)品的信任度在降低。目前,許多被開發(fā)的防偽標(biāo)簽具有物理上不可克隆的特征,如散射表面的隨機圖案、隨機分布的納米顆粒圖案和液晶紋理等。褶皺圖案是自然界生物體和工程材料領(lǐng)域常見的特殊現(xiàn)象,是一種微觀的隨機地形,擁有著廣泛而不可復(fù)制的信息,在防偽技術(shù)上有廣泛的應(yīng)用前景。




本文詳細(xì)內(nèi)容請下載:http://theprogrammingfactory.com/resource/share/2000003377




作者信息:

陳  雨1,陳桂雄1,周雄圖1,2,張永愛1,2,林志賢1,2,吳朝興1,2,郭太良1,2

(1.福州大學(xué) 物理與信息工程學(xué)院,福建 福州350116; 2.中國福建光電信息科學(xué)與技術(shù)創(chuàng)新實驗室,福建 福州350116)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。