用于自動視力檢測的手勢識別方法研究
信息技術與網(wǎng)絡安全
何啟莉,何家峰,郭 娟
(廣東工業(yè)大學 信息工程學院,廣東 廣州510006)
摘要: 對于自動視力檢測系統(tǒng),手勢識別是關鍵問題,但是采用傳統(tǒng)卷積神經(jīng)網(wǎng)絡模型識別手勢存在過擬合、計算量大等問題。提出了一種GR-AlexNet模型,對AlexNet網(wǎng)絡模型進行了適應性修改和優(yōu)化:為了加快計算速度,用7×7、5×5、1×1的三個小卷積核替代原來的11×11的大卷積核,并刪除LRN層和一個全連接層;為了減輕過擬合效應,在每次卷積后都加上一個Dropout優(yōu)化。對同一數(shù)據(jù)集分別使用LeNet模型、AlexNet模型、VGG16模型與GR-AlexNet模型進行對比實驗。實驗表明GR-AlexNet模型在識別準確率上較傳統(tǒng)的模型有一定的提高,能抑制過擬合現(xiàn)象,并且具有更快的訓練速度。
中圖分類號: TP391.41
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.03.006
引用格式: 何啟莉,何家峰,郭娟. 用于自動視力檢測的手勢識別方法研究[J].信息技術與網(wǎng)絡安全,2021,40(3):32-37,47.
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.03.006
引用格式: 何啟莉,何家峰,郭娟. 用于自動視力檢測的手勢識別方法研究[J].信息技術與網(wǎng)絡安全,2021,40(3):32-37,47.
Research on gesture recognition method for automatic vision detection
He Qili,He Jiafeng,Guo Juan
(School of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China)
Abstract: For automatic vision detection systems, gesture recognition is a key issue, but the traditional convolutional neural network model to recognize gestures has problems such as over-fitting and large amount of calculation. This paper proposes a GR-Alexnet model, which adaptively modifies and optimizes the Alexnet network model. In order to speed up the calculation, three small convolution kernels of 7×7, 5×5, and 1×1 are used to replace the original 11×11 large convolution kernel, and delete the LRN layer and a fully connected layer; in order to reduce the over-fitting effect, a dropout optimization is added after each convolution. The LeNet model, the Alexnet model ,the VGG16 model and the GR-Alexnet model were used for comparative experiments on the same data set. Experiments show that the GR-Alexnet model has a certain improvement in recognition accuracy compared with the traditional model, can suppress the over-fitting phenomenon, and has a faster training speed.
Key words : automatic vision detection;OpenCV;gesture recognition;Gesture Recognition AlexNet(GR-AlexNet)
0 引言
隨著人工智能技術的進步,智能化設備逐漸融入到人們生活的方方面面。傳統(tǒng)的醫(yī)療檢測儀器逐漸被智能電子儀器所替代,如心率測量儀、血壓檢測儀等,然而視力檢測這一基本的體檢項目仍然沿用傳統(tǒng)的人工檢測方法,檢測效率低,消耗人力且極不方便。隨著計算機視覺技術迅速發(fā)展,手勢識別也逐漸成為智能人機交互的重要研究領域[1-4]。本文通過對視力檢測進行手勢識別,達到自動化視力檢測的目的。
本文詳細內(nèi)容請下載:http://theprogrammingfactory.com/resource/share/2000003422
作者信息:
何啟莉,何家峰,郭 娟
(廣東工業(yè)大學 信息工程學院,廣東 廣州510006)
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉(zhuǎn)載。