基于特征級(jí)注意力的方面級(jí)情感分類模型研究
2021年電子技術(shù)應(yīng)用第7期
楊嘉佳1,熊仁都1,劉 金1,唐 球1,左 嬌2
1.華北計(jì)算機(jī)系統(tǒng)工程研究所,北京100083;2.中國(guó)長(zhǎng)城科技集團(tuán)股份有限公司,廣東 深圳518057
摘要: 近年來(lái)大數(shù)據(jù)、自然語(yǔ)言處理等技術(shù)得到了飛速發(fā)展。情感分析作為自然語(yǔ)言處理細(xì)分領(lǐng)域的前沿技術(shù)之一,得到了極大的重視。然而,低參數(shù)量、高精度依然是制約情感分析的關(guān)鍵因素之一。為實(shí)現(xiàn)模型參數(shù)少、模型分類精度高的情感分析需求,通過(guò)改進(jìn)特征級(jí)注意力機(jī)制的輸入向量,以及前饋神經(jīng)網(wǎng)絡(luò)與注意力編碼的前后位置關(guān)系,得到可復(fù)位特征級(jí)注意力機(jī)制,并基于該機(jī)制提出了基于可復(fù)位特征級(jí)注意力方面級(jí)情感分類模型(RFWA)和基于可復(fù)位特征級(jí)自注意力方面級(jí)情感分類模型(RFWSA),實(shí)現(xiàn)了高精度的方面級(jí)情感分析效果。在公開(kāi)數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果表明,相比現(xiàn)有的主流情感分析方法,所提出的模型有明顯的優(yōu)勢(shì),尤其是在取得相當(dāng)分類效果的情況下,模型的參數(shù)量?jī)H為最新AOA網(wǎng)絡(luò)的1/4。
中圖分類號(hào): TP391.41
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.200559
中文引用格式: 楊嘉佳,熊仁都,劉金,等. 基于特征級(jí)注意力的方面級(jí)情感分類模型研究[J].電子技術(shù)應(yīng)用,2021,47(7):78-82.
英文引用格式: Yang Jiajia,Xiong Rendou,Liu Jin,et al. Research on aspect level sentiment classification model based on feature level attention[J]. Application of Electronic Technique,2021,47(7):78-82.
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.200559
中文引用格式: 楊嘉佳,熊仁都,劉金,等. 基于特征級(jí)注意力的方面級(jí)情感分類模型研究[J].電子技術(shù)應(yīng)用,2021,47(7):78-82.
英文引用格式: Yang Jiajia,Xiong Rendou,Liu Jin,et al. Research on aspect level sentiment classification model based on feature level attention[J]. Application of Electronic Technique,2021,47(7):78-82.
Research on aspect level sentiment classification model based on feature level attention
Yang Jiajia1,Xiong Rendou1,Liu Jin1,Tang Qiu1,Zuo Jiao2
1.National Computer System Engineering Research Institute of China,Beijing 100083,China; 2.China Greatwall Technology Group Co.,Ltd.,Shenzhen 518057,China
Abstract: In recent years, big data, natural language processing and other technologies have been developed rapidly. As one of the cutting-edge technologies in the field of natural language processing, emotion analysis has received great attention. However, High precision and high performance are still the key factors restricting emotional analysis. In order to achieve high-precision emotion analysis, based on the feature-level neural network, this paper improves the reset feature level attention mechanism, and proposes an aspect level emotion classification model based on the reset feature level attention(RFWA) and an aspect level emotion classification model based on the reset feature level self-attention(RFWSA). Finally, combined with Bi-LSTM-CRF,high quality aspect level emotion analysis is realized by aspect level phrase extraction in the network. The experimental results show that compared with the existing mainstream emotion analysis model, the model proposed in this paper has obvious advantages. Especially when the classification effect is quite good, the parameters of the model are only 1/4 of the AOA Network.
Key words : emotion analysis;aspect level;feature level;self attention
0 引言
在信息化時(shí)代背景下,各行業(yè)產(chǎn)生了大量的多源異構(gòu)數(shù)據(jù)。對(duì)這些數(shù)據(jù)的情感傾向進(jìn)行分析,衍生出很多基于傳統(tǒng)行業(yè)的新實(shí)踐和新業(yè)務(wù)模式。情感分析是當(dāng)下人工智能的一個(gè)熱門應(yīng)用,是自然語(yǔ)言處理領(lǐng)域的一個(gè)重要分支,根據(jù)文本研究對(duì)象細(xì)粒程度的區(qū)別,研究者主要在3個(gè)層次級(jí)別上研究情感分析:文檔級(jí)、語(yǔ)句級(jí)和方面級(jí)(aspect level)。情感分析的粒度越細(xì),則精確度越高,也就能更好地發(fā)現(xiàn)情感極性。方面級(jí)情感分析技術(shù)[1]主要用于解決情感極性問(wèn)題,與文檔級(jí)、語(yǔ)句級(jí)情感分類相比,方面級(jí)情感分析因?yàn)榛?aspect 實(shí)體,使得情感分析更加細(xì)?;?。
本文詳細(xì)內(nèi)容請(qǐng)下載:http://theprogrammingfactory.com/resource/share/2000003660。
作者信息:
楊嘉佳1,熊仁都1,劉 金1,唐 球1,左 嬌2
(1.華北計(jì)算機(jī)系統(tǒng)工程研究所,北京100083;2.中國(guó)長(zhǎng)城科技集團(tuán)股份有限公司,廣東 深圳518057)
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。