《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計應(yīng)用 > 基于多尺度網(wǎng)絡(luò)的絕緣子自曝狀態(tài)智能認知方法研究
基于多尺度網(wǎng)絡(luò)的絕緣子自曝狀態(tài)智能認知方法研究
2021年電子技術(shù)應(yīng)用第8期
萬 濤1,吳立剛1,陸 燁2,王 浩2,張 瀟2,范葉平1,楊德勝1
1.國網(wǎng)信息通信產(chǎn)業(yè)集團安徽繼遠軟件有限公司,安徽 合肥230088; 2.國網(wǎng)江蘇省電力公司徐州供電分公司,江蘇 徐州221005
摘要: 針對已有絕緣子狀態(tài)識別模型,以及深層網(wǎng)絡(luò)尺度和交叉熵損失函數(shù)的缺陷,仿照運維人員檢修模式,即依據(jù)評測結(jié)果的可信度動態(tài)決策,基于多尺度網(wǎng)絡(luò)構(gòu)建了一種絕緣子自曝狀態(tài)智能認知方法。首先,面向定位歸一化化預(yù)處理后的絕緣子圖像,基于ResNet-18增加不同結(jié)構(gòu)的網(wǎng)絡(luò)分支提高網(wǎng)絡(luò)適應(yīng)不同分辨率的能力,同時在網(wǎng)絡(luò)末端添加多尺度信息融合模塊;其次,隨機配置網(wǎng)絡(luò)面向多個尺度特征,構(gòu)建了泛化的自曝狀態(tài)分類認知準則;最后,為了評測自曝狀態(tài)分類認知結(jié)果的可信度,基于定義的誤差指標自調(diào)節(jié)多尺度網(wǎng)絡(luò)架構(gòu),重構(gòu)不確定認知結(jié)果約束下的特征向量和分類認知準則,以進行自曝狀態(tài)再認知。實驗結(jié)果顯示,與其他方法相比,所提出的智能認知方法增強了模型的泛化能力和認知精度。
中圖分類號: TP391
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.200223
中文引用格式: 萬濤,吳立剛,陸燁,等. 基于多尺度網(wǎng)絡(luò)的絕緣子自曝狀態(tài)智能認知方法研究[J].電子技術(shù)應(yīng)用,2021,47(8):91-96.
英文引用格式: Wan Tao,Wu Ligang,Lu Ye,et al. Research on intelligent cognition method of insulator self-blast state based on multi-scale network[J]. Application of Electronic Technique,2021,47(8):91-96.
Research on intelligent cognition method of insulator self-blast state based on multi-scale network
Wan Tao1,Wu Ligang1,Lu Ye2,Wang Hao2,Zhang Xiao2,F(xiàn)an Yeping1,Yang Desheng1
1.Anhui Jiyuan Software Co.,Ltd.,State Grid Communication Industry Group Co.,Ltd.,Hefei 230088,China; 2.State Grid Xuzhou Electric Power Supply Company,Xuzhou 221005,China
Abstract: In view of the drawbacks of the existing insulator state recognition models, and the scale and softmax loss function of deep network, imitating the mode of personnel operation and maintenance, that is, dynamic decision-making based on the credibility of the evaluation results, this paper constructs an intelligent cognition method of insulator self-blast states based on the multi-scale network. Firstly, for the pre-processed insulator images with localization and normalization, based on ResNet-18, branches with different network structure are added to improve the network ability to adapt to different resolutions. At the same time, the multi-scale information fusion module is added at the end of the network. Secondly, facing multiple scale features, stochastic configuration network(SCN) constructs a generalized cognition criterion of self-blast state classification. Finally, in order to evaluate the credibility of the self-blast state cognition result, based on the defined error index, the multi-scale network architecture is self-adjusted to reconstruct the feature vector and classification cognition criterion under the constraint of the uncertain cognition result, which carries out the self-blast state renewal cognition.The experimental results show that the proposed intelligent cognition method enhances the generalization ability and cognition accuracy compared with other methods.
Key words : insulator state;ResNet;feedback cognition;multi-resolution;multi-scale

0 引言

    絕緣子作為輸電電路中的重要器件,被安裝在非等電位或?qū)w與接地器件之間,其自爆與否會嚴重影響輸電線路的安全[1-3]?,F(xiàn)代輸電線路運維檢修機制通常基于直升機或無人機按照預(yù)定軌跡拍攝的視頻,由人對每幀圖像進行自爆絕緣子位置辨識。然而,人的主觀因素,以及運維成本和復(fù)雜環(huán)境的客觀因素,使得現(xiàn)代輸電線路運維檢修模式費時耗力。因此,亟待研究絕緣子自曝狀態(tài)的智能認知方法。




本文詳細內(nèi)容請下載:http://theprogrammingfactory.com/resource/share/2000003708。



作者信息:

萬  濤1,吳立剛1,陸  燁2,王  浩2,張  瀟2,范葉平1,楊德勝1

(1.國網(wǎng)信息通信產(chǎn)業(yè)集團安徽繼遠軟件有限公司,安徽 合肥230088;

2.國網(wǎng)江蘇省電力公司徐州供電分公司,江蘇 徐州221005)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。