《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計(jì)應(yīng)用 > 基于DAG-SVMS的非侵入式負(fù)荷識(shí)別方法
基于DAG-SVMS的非侵入式負(fù)荷識(shí)別方法
2021年電子技術(shù)應(yīng)用第10期
王 毅1,2,徐元源1,李松濃2
1.重慶郵電大學(xué) 通信與信息工程學(xué)院,重慶400065;2.國網(wǎng)重慶市電力公司電力科學(xué)研究院,重慶404100
摘要: 在供電入口處嵌入非侵入式負(fù)荷識(shí)別技術(shù),有利于推動(dòng)建筑節(jié)能、實(shí)現(xiàn)電網(wǎng)負(fù)荷預(yù)測(cè)、開發(fā)智能樓宇、完善智能電網(wǎng)體系建設(shè)。據(jù)此,提出一種基于有向無環(huán)圖支持向量機(jī)(Directed Acyclic Graph Support Vector Machines,DAG-SVMS)的負(fù)荷辨識(shí)方法。首先,對(duì)總線電流信號(hào)進(jìn)行事件檢測(cè),檢測(cè)到暫態(tài)事件后,分離目標(biāo)負(fù)荷暫態(tài)電流波形,提取特征,然后,將特征輸入預(yù)先訓(xùn)練好的DAG-SVMS模型進(jìn)行分類識(shí)別。為提升分類器性能,使用粒子群優(yōu)化PSO(Particle Swarm Optimization)算法優(yōu)化DAG-SVMS分類器的參數(shù)。為減小累積誤差,提出Gini指數(shù)優(yōu)化DAG-SVMS節(jié)點(diǎn)順序的策略。實(shí)驗(yàn)結(jié)果表明,文中方法識(shí)別準(zhǔn)確率高,識(shí)別速度快,具有可行性。
中圖分類號(hào): TN915
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.211451
中文引用格式: 王毅,徐元源,李松濃. 基于DAG-SVMS的非侵入式負(fù)荷識(shí)別方法[J].電子技術(shù)應(yīng)用,2021,47(10):107-112.
英文引用格式: Wang Yi,Xu Yuanyuan,Li Songnong. Non-intrusive load identification method based on improved directed acyclic graph support vector machines[J]. Application of Electronic Technique,2021,47(10):107-112.
Non-intrusive load identification method based on improved directed acyclic graph support vector machines
Wang Yi1,Xu Yuanyuan1,Li Songnong2
1.School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications, Chongqing 400065,China; 2.Chongqing Electric Power Research Institute,Chongqing 404100,China
Abstract: Embedding non-intrusive load identification technology in the power supply entrance is conducive to promote building energy saving, realize power grid load forecasting, develop intelligent buildings and improve the construction of smart grid system. Therefore, this paper proposes a non-intrusive power load identification method based on directed acyclic graph support vector machines(DAG-SVMS). Firstly, the event detection of power system bus current signal is carried out. After the transient event is detected, the transient current waveform of the target load is separated and the features are extracted. Then, the features are input into the pre trained DAG-SVMS model for classification and identification. In order to improve the performance of the classifier, particle awarm optimization(PSO) algorithm is used to optimize the parameters of the DAG-SVMS model. In order to reduce the cumulative error, Gini index is proposed to optimize the node order of DAG-SVMS. The experimental results show that the proposed method has high recognition accuracy, fast recognition speed and feasibility.
Key words : non-intrusive load identification;transient event;DAG-SVMS model;Gini index;PSO algorithm

0 引言

    智能電網(wǎng)建設(shè)是以提高生態(tài)可持續(xù)性、供電安全性和經(jīng)濟(jì)競(jìng)爭(zhēng)力為目標(biāo)[1],表現(xiàn)為提高負(fù)荷監(jiān)測(cè)技術(shù)、提高終端用戶響應(yīng)速度、提高需求側(cè)的節(jié)約能效、提供智能控制技術(shù)、分布式能源的自由接入[2]。非侵入式負(fù)荷識(shí)別作為非侵入式負(fù)荷監(jiān)測(cè)的核心內(nèi)容,在不改變用戶電路結(jié)構(gòu)的條件下,通過測(cè)量總負(fù)荷數(shù)據(jù),即可獲得系統(tǒng)內(nèi)具體用電負(fù)荷的數(shù)量、類別、運(yùn)行狀態(tài)信息,安裝和維護(hù)成本低,易于推廣。該技術(shù)的實(shí)現(xiàn),可為用戶、電力公司以及設(shè)備提供參考[3]。用戶端,用戶用電信息得到反饋,提升節(jié)能意識(shí),規(guī)范用電行為。電力公司端,能提高負(fù)荷預(yù)測(cè)的精確度,實(shí)現(xiàn)有效的負(fù)荷規(guī)劃、電能調(diào)度。對(duì)設(shè)備制造商來說,可據(jù)此識(shí)別出故障或低效設(shè)備,加快技術(shù)革新,推動(dòng)高能效設(shè)備研發(fā)。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://theprogrammingfactory.com/resource/share/2000003793。




作者信息:

王  毅1,2,徐元源1,李松濃2

(1.重慶郵電大學(xué) 通信與信息工程學(xué)院,重慶400065;2.國網(wǎng)重慶市電力公司電力科學(xué)研究院,重慶404100)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。