文獻標識碼: A
DOI: 10.19358/j.issn.2097-1788.2022.04.010
引用格式: 張永偉,朱祁,吳永城. 基于分解策略的多標簽在線特征選擇算法[J].網絡安全與數據治理,2022,41(4):65-71,77.
0 引言
近年來,隨著多標簽分類問題的深入研究,出現了大量的多標簽分類算法。目前,在多標簽分類中,存在四種主要的處理策略:數據分解法、算法擴展法、混合法和集成法。特征選擇是多標簽分類問題中的一個重要課題,并且已經進行了廣泛研究。對于分類,特征選擇的目標是通過相關特征的一個子集來構建有效的預測模型,通過消除不相關和冗余特征,可以減輕維度災難的影響,提高泛化性能,加快學習過程,提高模型預測的性能。特征選擇已在許多領域得到應用,特別是在涉及高維數據的問題中。
雖然已經進行了廣泛研究,但大多數現有的特征選擇研究都局限于批量學習,假定特征選擇任務是以離線/批量學習的方式進行的,而且訓練實例的特征是先驗的。這樣的假設并不總是適用于訓練樣本以順序方式到達的實際應用。與批量學習方式相比,在線學習方式則采用增量的方式處理數據集,相對而言,計算代價要小于批量學習算法。在現有的多標簽在線分類算法中計算數據的全部特征信息是需要代價的。尤其是存在高維數據和數據冗余時,傳統(tǒng)的多標簽在線分類算法,需大量計算且分類性能較差。本文利用在線學習的優(yōu)勢,研究了多標簽在線特征選擇問題,旨在通過有效地探索在線學習方法來解決多標簽特征選擇問題。具體而言,多標簽在線特征選擇的目標是研究在線分類器,其僅涉及用于分類的少量和固定數量的特征。當處理高維度的連續(xù)訓練數據時,如在線垃圾郵件分類任務(其中傳統(tǒng)的批量特征選擇方法不能直接應用),在線特征選擇尤為重要和必要。
本文詳細內容請下載:http://theprogrammingfactory.com/resource/share/2000004992。
作者信息:
張永偉1,2,朱 祁1,2,吳永城1,2
(1.南瑞集團(國網電力科學研究院)有限公司,江蘇 南京210003;
2.南京南瑞智慧交通科技有限公司,江蘇 南京210032)