本例的目的是研究智能手機(jī)Camera系統(tǒng)的雜散光。雜散光是指光向相機(jī)傳感器不需要的散光光或鏡面光,是在光學(xué)設(shè)計(jì)中無(wú)意產(chǎn)生的,會(huì)降低相機(jī)系統(tǒng)的光學(xué)性能。
在本例中,光學(xué)透鏡系統(tǒng)使用Ansys Zemax OpticStudio (ZOS)進(jìn)行設(shè)計(jì),并使用新的“Zemax Importer”工具一鍵導(dǎo)入鏡頭系統(tǒng)到Speos中進(jìn)行系統(tǒng)級(jí)雜散光分析。所使用的光學(xué)機(jī)械參數(shù)和透鏡邊緣可以在CAD平臺(tái)上進(jìn)行設(shè)計(jì),然后在Ansys Speos中進(jìn)行修改。這個(gè)例子主要涵蓋了整個(gè)工作流程中的Speos部分,介紹了雜散光分析的概念,并演示了Speos的功能:Zemax Importer工具, light expert (LXP)光線追跡和序列檢測(cè)雜散光。
操作流程概述
上圖是使用Ansys工具分析相機(jī)系統(tǒng)雜散光的典型工作流程。工作流程可分為四個(gè)部分:1. 使用“Zemax Importer”工具導(dǎo)入ZOS鏡頭設(shè)計(jì)到Speos。2. 檢測(cè)所有可能的關(guān)鍵太陽(yáng)位置和整個(gè)系統(tǒng)的光泄漏。3.相機(jī)視場(chǎng)內(nèi)四個(gè)外環(huán)境太陽(yáng)位置的雜散光模擬(可選)。4. 分析雜散光路徑序列,對(duì)外環(huán)境太陽(yáng)位置的雜散光進(jìn)行抑制。
第一步:使用“Zemax Importer”工具導(dǎo)入OS鏡頭設(shè)計(jì)到Speos
使用“Zemax導(dǎo)入工具”導(dǎo)入ZOS鏡頭設(shè)計(jì)到Speos。在這里,使用ZOS設(shè)計(jì)的高效手機(jī)相機(jī)鏡頭系統(tǒng),通過(guò)使用Zemax importer工具可以讀取ZOS透鏡數(shù)據(jù)參數(shù),并根據(jù)它們的數(shù)學(xué)表示自動(dòng)重建每個(gè)透鏡,作為基于CAD的Speos透鏡特性幾何數(shù)據(jù),并訪問(wèn)所有透鏡參數(shù)。此外,該工具將ZOS材料轉(zhuǎn)換為Speos材料格式,并將光學(xué)特性應(yīng)用到透鏡上。該成像過(guò)程使用一個(gè)照度傳感器。所有幾何圖形的參考點(diǎn)、原點(diǎn)和照度傳感器對(duì)應(yīng)于圖像平面的位置。然后將鏡頭系統(tǒng)添加到光學(xué)機(jī)械部分(灰色)和鏡頭邊緣(黃色)。
1. 在Speos仿真界面,點(diǎn)擊Zemax import工具,然后選擇*.ZMX的Zemax鏡頭設(shè)計(jì)數(shù)據(jù),工具會(huì)自動(dòng)轉(zhuǎn)換Zemax的鏡頭數(shù)據(jù)參數(shù)、材料和能量接收器信息,并將其轉(zhuǎn)換為Speos功能數(shù)據(jù)。
2. 為了清晰顯示鏡頭系統(tǒng),可以以不同的顏色顯示不同的鏡頭數(shù)。
3. 定義環(huán)境太陽(yáng)光源入光到鏡頭系統(tǒng)中,并在direct simulation選擇source、geometry、sensor運(yùn)算仿真,激活light expert為true,并在sensor中勾選LXP選項(xiàng)。
第二步:檢測(cè)所有可能的關(guān)鍵太陽(yáng)位置和整個(gè)系統(tǒng)的光泄漏
使用光線逆向追蹤模擬方法在一個(gè)direct模擬中研究所有可能的臨界太陽(yáng)位置。這是一種逆向追跡方法,從成像sensor發(fā)送光線通過(guò)相機(jī)系統(tǒng)到天空。通過(guò)這種方法,還可以檢測(cè)機(jī)械系統(tǒng)中的漏光。Speos光線跟蹤算法考慮了所有幾何形狀的所有材料行為。此外,將根據(jù)相機(jī)視場(chǎng)內(nèi)外的臨界和光線路徑對(duì)這些區(qū)域進(jìn)行分類。相機(jī)視場(chǎng)內(nèi)的光源可以在鏡頭表面經(jīng)歷多次二次反光,導(dǎo)致鬼反光,鏡頭光暈在成像儀上。視場(chǎng)外的光源會(huì)對(duì)機(jī)械和光學(xué)零件造成雜散光散光。通過(guò)利用Speos LXP功能,可以在強(qiáng)度結(jié)果上可視化和導(dǎo)出這些特定區(qū)域的光線路徑。
對(duì)于本例,假設(shè)相機(jī)系統(tǒng)水平對(duì)稱。因此,將強(qiáng)度傳感器作為半球體放置在系統(tǒng)的頂部。使用LXP功能,可以選擇任意區(qū)域并顯示光線傳播路徑。
第三步:視場(chǎng)內(nèi)四個(gè)太陽(yáng)位置的雜散光模擬
在這一步中,運(yùn)行了一個(gè)完整的系統(tǒng)雜散光模擬在相機(jī)視場(chǎng)內(nèi)的四個(gè)不同的太陽(yáng)位置(從0°到15°)。模擬使用Speos GPU運(yùn)行,得到完整的相機(jī)系統(tǒng)在相機(jī)成像sensor上的雜散光結(jié)果為四個(gè)太陽(yáng)位置分別的成像效果。
第四步:分析雜散光路徑序列,對(duì)一個(gè)太陽(yáng)位置的雜散光進(jìn)行抑制
在第4步中,將通過(guò)利用Speos LXP和“序列檢測(cè)”功能,識(shí)別最關(guān)鍵的光線路徑序列(根據(jù)傳感器的照度)和導(dǎo)致5°太陽(yáng)位置的成像儀上雜散光的物體相互作用。此外,將展示如何解決明亮的鬼像。
1. 顯示5°太陽(yáng)位置成像結(jié)果,打開xmp,點(diǎn)擊measure,選擇雜光區(qū)域,并顯示其數(shù)據(jù)結(jié)果。
2. 在XMP結(jié)果中,點(diǎn)擊tools工具,sequence detection得到序列分層光線結(jié)果,得到序列層以發(fā)現(xiàn)從層1到層20的光線路徑序列,這些序列是根據(jù)能量到達(dá)傳感器的順序排列的。
3. 舉例分析,序列20的光線沿著從光源發(fā)出的直接順序路徑。穿過(guò)前四個(gè)透鏡,直到它們被鏡面反光到物體10的正面。單擊對(duì)象10以突出顯示3D視圖中的幾何圖形。
4. 同樣的工作流程可以應(yīng)用于結(jié)果中的其他區(qū)域,以識(shí)別導(dǎo)致雜散光的元素。
5. 一旦對(duì)系統(tǒng)進(jìn)行了分析,就可以與設(shè)計(jì)和機(jī)械團(tuán)隊(duì)討論不同光學(xué)元件對(duì)雜散光的影響。光學(xué)拋光表面的菲涅耳反光和透光率分別為4%和96%。通過(guò)改變表面的透光率,可以控制鏡面雜散光。AR涂層減少了光學(xué)系統(tǒng)中的反光。通過(guò)在物體10的正面應(yīng)用AR涂層作為面光學(xué)特性(FOP),可以消除鬼像點(diǎn)。
重要參數(shù)設(shè)置
meshing網(wǎng)格設(shè)置是獲得正確仿真結(jié)果的關(guān)鍵。它們定義了將被模擬的幾何圖形的質(zhì)量。網(wǎng)格可以得到更好的結(jié)果,但也需要更長(zhǎng)的模擬時(shí)間。粗糙的網(wǎng)格會(huì)導(dǎo)致較差的結(jié)果,特別是對(duì)于精密的光學(xué)元件。網(wǎng)格設(shè)置成與機(jī)身尺寸成比例,并在所有光學(xué)元件上應(yīng)用了精細(xì)的局部網(wǎng)格。關(guān)于網(wǎng)格設(shè)置的更多細(xì)節(jié)可以Speos user guide在meshing中找到。
更多信息可以來(lái)這里獲取==>>電子技術(shù)應(yīng)用-AET<<