《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 基于強化學習的自適應編碼調制策略
基于強化學習的自適應編碼調制策略
2023年電子技術應用第5期
馬穎1,王珂1,吳戈男2,邢哲2
(1.北京郵電大學 信息與通信工程學院,北京100876;2.中國空間技術研究院衛(wèi)星應用總體部,北京100094)
摘要: NTN(Non-Terrestrial Network)是面向衛(wèi)星通信和低空通信的重要應用場景,標志著5G技術應用從陸地通信走向了空間通信,可以預見衛(wèi)星網絡將是未來6G通信網絡中重要組成。為了滿足衛(wèi)星通信質量要求、最大程度地增大系統(tǒng)容量,需要應用自適應編碼調制技術根據(jù)信道狀態(tài)信息在不斷變化的通信環(huán)境下動態(tài)調整調制階數(shù)和編碼碼率。人工智能在解決衛(wèi)星高動態(tài)場景下信道條件快速變化所產生的問題具有明顯的潛力。采用基于強化學習的低軌衛(wèi)星自適應編碼調制策略,解決了衛(wèi)星通信環(huán)境的變化造成的門限表與實際信道不匹配的問題,與傳統(tǒng)ARIMA (Autoregressive Integrated Moving Average)算法相比提升達到20%以上。
中圖分類號:TN929.5
文獻標志碼:A
DOI: 10.16157/j.issn.0258-7998.233992
中文引用格式: 馬穎,王珂,吳戈男,等. 基于強化學習的自適應編碼調制策略[J]. 電子技術應用,2023,49(5):35-40.
英文引用格式: Ma Ying,Wang Ke,Wu Genan,et al. Adaptive coding modulation strategy based on reinforcement learning[J]. Application of Electronic Technique,2023,49(5):35-40.
Adaptive coding modulation strategy based on reinforcement learning
Ma Ying1,Wang Ke1,Wu Genan2,Xing Zhe2
(1.School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2.Department of Satellite Application, China Academy of Space Technology, Beijing 100094, China)
Abstract: NTN (non-terrestrial network) is an important application scenario for satellite communications and low-altitude communications, marking the transition of 5G technology applications from land communications to space communications. It is foreseeable that satellite networks will be an important component of future 6G communications networks. In order to meet the quality requirements of satellite communication and maximize the system capacity, it is necessary to apply adaptive coding and modulation technology to dynamically adjust the modulation order and coding rate according to the channel state information in the changing communication environment. AI has clear potential to solve problems arising from rapidly changing channel conditions in satellite high-dynamic scenarios. This paper adopts the low-orbit satellite adaptive coding and modulation strategy based on reinforcement learning to solve the problem of the mismatch between the threshold table and the actual channel caused by the change of the satellite communication environment, which is improved by above 20% compared with the traditional ARIMA (autoregressive integrated moving average) algorithm.
Key words : reinforcement learning;6G;adaptive coding modulation;NTN

0 引言

2001年,Goldmith等學者深入研究了平坦衰落信道場景下的自適應調制,同時考慮誤碼率和系統(tǒng)頻譜效率,有效提升了系統(tǒng)的性能,隨著自適應技術的發(fā)展,將自適應調制編碼應用在衛(wèi)星通信上的研究越來越深厚。2004年,DVB-S2標準中加入了自適應編碼調制技術,與DVB-S標準相比,傳輸信道容量至少提高了30%,在同樣的頻譜效率限制下接收到的信號質量更高。2012年,Vassaki等學者利用陸地移動衛(wèi)星通信的陰影萊斯模型和自適應調制方案,導出了最優(yōu)功率分配和有效容量的封閉表達式,證明了在特定的服務質量約束下,系統(tǒng)的有效容量是最大的。2019年,于秀蘭等學者考慮到在Ka波段下雨衰和地面移動容易干擾衛(wèi)星信號的特點,提出了低軌衛(wèi)星自適應傳輸方案,仿真結果表明其有效地彌補了信號衰減,并降低了系統(tǒng)誤碼率。



本文詳細內容請下載:http://theprogrammingfactory.com/resource/share/2000005320




作者信息:

馬穎1,王珂1,吳戈男2,邢哲2

(1.北京郵電大學 信息與通信工程學院,北京100876;2.中國空間技術研究院衛(wèi)星應用總體部,北京100094)


微信圖片_20210517164139.jpg

此內容為AET網站原創(chuàng),未經授權禁止轉載。