《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 設(shè)計(jì)應(yīng)用 > 面向分類(lèi)任務(wù)的隱私保護(hù)協(xié)作學(xué)習(xí)技術(shù)
面向分類(lèi)任務(wù)的隱私保護(hù)協(xié)作學(xué)習(xí)技術(shù)
網(wǎng)絡(luò)安全與數(shù)據(jù)治理 2023年第5期
黎蘭蘭,張信明
(中國(guó)科學(xué)技術(shù)大學(xué)計(jì)算機(jī)學(xué)院,安徽合肥230026)
摘要: 隨著相關(guān)法律法規(guī)的發(fā)布和人們隱私意識(shí)的覺(jué)醒,隱私保護(hù)要求不斷提高。針對(duì)分類(lèi)任務(wù)場(chǎng)景,提出了一種隱私性與效用性并重的面向分類(lèi)任務(wù)的隱私保護(hù)協(xié)作技術(shù)(PCTC)。在隱私安全方面,將同態(tài)加密和差分隱私相結(jié)合,并設(shè)計(jì)了一種安全聚合機(jī)制,實(shí)現(xiàn)更加健壯的隱私保護(hù);在效用性方面,引入信息熵的計(jì)算因子對(duì)標(biāo)簽可信度進(jìn)行度量,降低標(biāo)注噪聲對(duì)模型性能的影響。最后對(duì)所提出的方案進(jìn)行了安全性分析,并在公開(kāi)數(shù)據(jù)集上進(jìn)行了實(shí)驗(yàn)驗(yàn)證。結(jié)果表明PCTC在保證數(shù)據(jù)隱私安全的同時(shí)大幅度提升了模型性能,具有較為廣闊的應(yīng)用前景。
中圖分類(lèi)號(hào):TP393
文獻(xiàn)標(biāo)識(shí)碼:A
DOI:10.19358/j.issn.2097-1788.2023.05.007
引用格式:黎蘭蘭,張信明.面向分類(lèi)任務(wù)的隱私保護(hù)協(xié)作學(xué)習(xí)技術(shù)[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2023,42(5):36-43.
Privacy-preserving collaborative learning technology for classification
Li Lanlan, Zhang Xinming
(School of Computer Science and Technology, University of Science and Technology of China, Hefei 230026, China)
Abstract: With the release of relevant laws and regulations and the awakening of people’s privacy awareness, the requirements for privacy protection are constantly increasing. Aiming at the scenario of classification, this paper proposes a Privacypreserving Collaborative Learning Technology for Classification (PCTC) that emphasizes both privacy and utility. In terms of privacy, homomorphic encryption and differential privacy are combined and a secure aggregation mechanism is designed to achieve more robust privacy protection. In terms of utility, the calculation factor of information entropy is introduced to measure the credibility of labels, which can reduce the impact of labeling noise on model performance. Finally, the security analysis of the proposed scheme is carried out, and the experiments are implemented on public datasets. The results show that PCTC significantly improves model performance while ensuring privacy and security of the data, and has broad application prospects.
Key words : privacy preservation; data labeling; classification task; homomorphic encryption; differential privacy

0     引言

近年來(lái),隨著數(shù)據(jù)產(chǎn)生速度和計(jì)算機(jī)算力的持續(xù)提升,機(jī)器學(xué)習(xí)在目標(biāo)識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理和對(duì)象檢測(cè)等許多領(lǐng)域都取得了巨大突破。新興的機(jī)器學(xué)習(xí)尤其是深度學(xué)習(xí)更是為產(chǎn)業(yè)的升級(jí)和變革提供了推動(dòng)力量,其中包括智慧農(nóng)業(yè)、智慧醫(yī)療等行業(yè)。良好的機(jī)器學(xué)習(xí)框架特別是有監(jiān)督的人工神經(jīng)網(wǎng)絡(luò)往往需要大量的標(biāo)注數(shù)據(jù),然而現(xiàn)實(shí)中任何單一實(shí)體都不可能總是擁有全部標(biāo)注數(shù)據(jù),多方協(xié)作學(xué)習(xí)是解決這一問(wèn)題的有效方案。



本文詳細(xì)內(nèi)容請(qǐng)下載:http://theprogrammingfactory.com/resource/share/2000005332




作者信息:

黎蘭蘭,張信明

(中國(guó)科學(xué)技術(shù)大學(xué)計(jì)算機(jī)學(xué)院,安徽合肥230026) 


微信圖片_20210517164139.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。