《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 設(shè)計(jì)應(yīng)用 > 基于關(guān)聯(lián)規(guī)則和遺傳算法的服裝輔料儲(chǔ)位優(yōu)化*
基于關(guān)聯(lián)規(guī)則和遺傳算法的服裝輔料儲(chǔ)位優(yōu)化*
電子技術(shù)應(yīng)用
周葉1,2,連明昌2,陳松航2,吳佳彬3,陳豪2
(1.福州大學(xué) 先進(jìn)制造學(xué)院,福建 泉州 362251;2.中國(guó)科學(xué)院 海西研究院泉州裝備制造研究中心,福建 泉州 362216; 3.福建柒牌時(shí)裝科技股份有限公司,福建 泉州 362200)
摘要: 針對(duì)服裝行業(yè)受時(shí)尚潮流影響,物料型號(hào)更新迅速,導(dǎo)致倉(cāng)庫(kù)庫(kù)存結(jié)構(gòu)混亂、作業(yè)效率低下的問(wèn)題,設(shè)計(jì)一種將Apriori算法同改進(jìn)遺傳算法結(jié)合(AIGA)的儲(chǔ)位優(yōu)化方法。首先Apriori算法挖掘物料組間關(guān)聯(lián)規(guī)則,將相關(guān)性較強(qiáng)物料組合并形成大類庫(kù)區(qū),按照大類揀貨頻次動(dòng)態(tài)調(diào)整庫(kù)區(qū)位置;其次結(jié)合物料相關(guān)性和揀貨頻次,以最小化揀貨距離為主要優(yōu)化目標(biāo)建立儲(chǔ)位分配模型。通過(guò)遺傳算法進(jìn)行儲(chǔ)位分配搜索,并改進(jìn)遺傳算法的初始化、交叉和變異算子,同時(shí)設(shè)計(jì)災(zāi)變機(jī)制,提高算法搜索性能。結(jié)果表明,與現(xiàn)有儲(chǔ)位分配方案相比,揀貨距離平均縮短23.85%,有效提高倉(cāng)庫(kù)作業(yè)效率。
中圖分類號(hào):TP391.9 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.233851
中文引用格式: 周葉,連明昌,陳松航,等. 基于關(guān)聯(lián)規(guī)則和遺傳算法的服裝輔料儲(chǔ)位優(yōu)化[J]. 電子技術(shù)應(yīng)用,2023,49(9):90-96.
英文引用格式: Zhou Ye,Lian Mingchang,Chen Songhang,et al. Optimization of clothing accessories storage allocation based on association rules and genetic algorithm[J]. Application of Electronic Technique,2023,49(9):90-96.
Optimization of clothing accessories storage allocation based on association rules and genetic algorithm
Zhou Ye1,2,Lian Mingchang2,Chen Songhang2,Wu Jiabin3,Chen Hao2
(1.School of Advanced Manufacturing, Fuzhou University, Quanzhou 362251, China; 2.Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Science, Quanzhou 362216, China; 3.Fujian Seven Brand Fashion & Technology Co., Ltd., Quanzhou 362200, China)
Abstract: Aiming at the problem that the clothing industry is affected by fashion trends and the material model is updated rapidly, which leads to the confusion of warehouse inventory structure and low efficiency of operation, a storage location optimization method combining Apriori algorithm with improved genetic algorithm (AIGA) is designed. First of all, Apriori algorithm mines the association rules between material groups, combines the materials with strong correlation to form a large class of warehouse area, and dynamically adjusts the location of the warehouse area according to the large class picking frequency. Secondly, based on the material correlation and picking frequency, a storage allocation model is established with the main objective of minimizing the picking distance. The storage allocation search is carried out by genetic algorithm, and the initialization, crossover and mutation operators of genetic algorithm are improved, and the catastrophe mechanism is designed to improve the search performance of the algorithm. The results show that compared with the existing storage allocation scheme, the picking distance is reduced by 23.85% on average, and the warehouse operation efficiency is effectively improved.
Key words : location allocation;association rules;genetic algorithm;catastrophic operation;clothing accessories warehouse

0 引言

我國(guó)是世界上最大的紡織品服裝生產(chǎn)和出口國(guó),服裝紡織對(duì)我國(guó)產(chǎn)業(yè)布局和經(jīng)濟(jì)發(fā)展至關(guān)重要。服裝紡織業(yè)作為傳統(tǒng)勞動(dòng)密集型產(chǎn)業(yè),各環(huán)節(jié)都需要倉(cāng)儲(chǔ)環(huán)節(jié)參與,但其倉(cāng)儲(chǔ)管理還高度依賴人工,僅料單揀選就占據(jù)60%以上的人力成本;而且,輔料型號(hào)受到時(shí)尚潮流影響更新頻繁。這些現(xiàn)象引發(fā)了儲(chǔ)位分配不合理、庫(kù)存結(jié)構(gòu)混亂等問(wèn)題。通過(guò)優(yōu)化倉(cāng)庫(kù)儲(chǔ)位分配方法能夠有效解決上述問(wèn)題,提高企業(yè)倉(cāng)庫(kù)作業(yè)效率[1]。

儲(chǔ)位分配問(wèn)題已經(jīng)被證明是NP-hard問(wèn)題[2]。目前多數(shù)研究利用物料間相關(guān)信息,采用元啟發(fā)式算法進(jìn)行優(yōu)化[3]。Chen等提出基于兩階段式禁忌搜索方法來(lái)優(yōu)化最小化平均行走時(shí)間[4]。Rani等以檢索時(shí)間和頻次為目標(biāo)建立多目標(biāo)優(yōu)化模型,通過(guò)遺傳算法(Genetic Algorithm,GA)計(jì)算儲(chǔ)位分配[5]。但傳統(tǒng)遺傳算法存在收斂過(guò)早、局部搜索能力差等問(wèn)題[6] 。焦玉玲等針對(duì)收斂過(guò)早問(wèn)題,提出多種群遺傳算法,以貨物出入庫(kù)效率、貨架穩(wěn)定性及產(chǎn)品關(guān)聯(lián)性為目標(biāo)建立模型獲得分配結(jié)果[7]。朱杰等針對(duì)遺傳算法易陷入局部最優(yōu),將模擬退火算法與遺傳算法結(jié)合來(lái)優(yōu)化儲(chǔ)位分配模型[8]。少數(shù)學(xué)者引入數(shù)據(jù)挖掘方法進(jìn)行儲(chǔ)位優(yōu)化[9]。Chiang等提出基于關(guān)聯(lián)規(guī)則的自適應(yīng)庫(kù)位分配方法,揀選距離較傳統(tǒng)分類方法提升明顯[10-11]。Pang等采用關(guān)聯(lián)規(guī)則挖掘訂單物料間的關(guān)系最小化揀貨距離[12]。

上述研究多數(shù)采用一次性優(yōu)化策略來(lái)處理儲(chǔ)位分配問(wèn)題,無(wú)法根據(jù)訂單變化進(jìn)行儲(chǔ)位調(diào)整。而且研究領(lǐng)域主要集中在電商倉(cāng)庫(kù),對(duì)服裝輔料倉(cāng)庫(kù)研究較少。本文針對(duì)服裝輔料倉(cāng)庫(kù)儲(chǔ)位分配問(wèn)題,設(shè)計(jì)一種基于Apriori算法和改進(jìn)遺傳算法(Apriori Improved Genetic Algorithm,AIGA)的儲(chǔ)位優(yōu)化方法,首先采用Apriori算法挖掘訂單信息,根據(jù)訂單變化動(dòng)態(tài)生成調(diào)整庫(kù)區(qū)劃分,將庫(kù)區(qū)劃分結(jié)果作為遺傳算法產(chǎn)生初始種群條件,提高初始種群質(zhì)量;其次設(shè)計(jì)災(zāi)變機(jī)制和改進(jìn)交叉變異算子,提高遺傳算法全局搜索能力,尋找合適的儲(chǔ)位分配方案,降低出入庫(kù)行走距離,提高現(xiàn)場(chǎng)人員作業(yè)效率。



本文詳細(xì)內(nèi)容請(qǐng)下載:http://theprogrammingfactory.com/resource/share/2000005644




作者信息:

周葉1,2,連明昌2,陳松航2,吳佳彬3,陳豪2

(1.福州大學(xué) 先進(jìn)制造學(xué)院,福建 泉州 362251;2.中國(guó)科學(xué)院 海西研究院泉州裝備制造研究中心,福建 泉州 362216;3.福建柒牌時(shí)裝科技股份有限公司,福建 泉州 362200)

微信圖片_20210517164139.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。