《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 嵌入式技術(shù) > 設(shè)計(jì)應(yīng)用 > 基于eIQ的中藥材圖像識別系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
基于eIQ的中藥材圖像識別系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
電子技術(shù)應(yīng)用
韓德強(qiáng),李宗耀,楊淇善,高雪園
(北京工業(yè)大學(xué) 信息學(xué)部,北京 100124)
摘要: 中藥材對人體疾病的預(yù)防及控制具有重要的作用,然而普通百姓對中藥材知識了解過少,可能由于濫用中藥材而帶來不可控的后果。因此,對中藥材進(jìn)行精準(zhǔn)識別是一項(xiàng)緊迫的任務(wù)。將輕量級神經(jīng)網(wǎng)絡(luò)模型應(yīng)用到中藥材識別中,提出在微控制器上實(shí)現(xiàn)基于MobileNetV3模型的中藥材圖像識別系統(tǒng)。首先建立中藥材圖像數(shù)據(jù)集,在eIQ機(jī)器學(xué)習(xí)軟件開發(fā)環(huán)境中根據(jù)MobileNetV3構(gòu)建識別基礎(chǔ)模型,并通過調(diào)整模型參數(shù)實(shí)現(xiàn)對模型的優(yōu)化,最后將模型文件部署到i.MX RT1060上,實(shí)現(xiàn)了對30種中藥材的識別。最終在驗(yàn)證集的準(zhǔn)確率達(dá)到86.79%。結(jié)果表明,在i.MX RT1060上實(shí)現(xiàn)中藥材識別具有很好的實(shí)際效果。
中圖分類號:TP183 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.233788
中文引用格式: 韓德強(qiáng),李宗耀,楊淇善,等. 基于eIQ的中藥材圖像識別系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J]. 電子技術(shù)應(yīng)用,2023,49(10):118-123.
英文引用格式: Han Deqiang,Li Zongyao,Yang Qishan,et al. Design and implementation of image recognition system for Chinese medicinal materials based on eIQ[J]. Application of Electronic Technique,2023,49(10):118-123.
Design and implementation of image recognition system for Chinese medicinal materials based on eIQ
Han Deqiang,Li Zongyao,Yang Qishan,Gao Xueyuan
(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China)
Abstract: Chinese herbal medicines play an important role in the prevention and control of human diseases, but the general public's knowledge of Chinese medicinal materials is too little, which may bring uncontrollable consequences due to the abuse of Chinese medicinal materials. Therefore, the accurate identification of Chinese medicinal materials is an urgent task. In this paper, the lightweight neural network model is applied to the recognition of Chinese medicinal materials, and an image recognition system based on the MobileNetV3 model is proposed on a microcontroller. Firstly, the image dataset of Chinese medicinal materials is established, the recognition basic model is built according to MobileNetV3 in the eIQ machine learning software development environment, and the model is optimized by adjusting the model parameters, and finally the model file is deployed to i.MX RT1060. Image recognition of 30 kinds of Chinese medicinal materials was realized, and the accuracy rate in the verification set reached 86.79%. The results showed that the image recognition of Chinese medicinal materials on i.MX RT1060 has a good practical effect.
Key words : MCU;identification of Chinese herbal medicines;MobileNetV3;convolutional neural network

0 引言

中醫(yī)作為中華民族原創(chuàng)的醫(yī)學(xué)科學(xué),在我國有著悠久的歷史,是我國醫(yī)藥寶庫中的重要組成部分。目前,中醫(yī)在心腦血管疾病、糖尿病等重大慢性病的防控及重大傳染性疾病的臨床研究都取得積極進(jìn)展,在此次新冠疫情的治療與防護(hù)中更是發(fā)揮了不可替代的作用[1]。而中藥則是中醫(yī)中最常見的治療手段。傳統(tǒng)的中藥材識別主要依靠經(jīng)驗(yàn)豐富的醫(yī)生,通過眼看、手摸、鼻聞、口嘗、水試、火試等方法來識別出每種中藥材的真?zhèn)蝺?yōu)劣。

目前,中藥材的智能識別主要依靠復(fù)雜的深度神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)。其中,吳沖等利用人工智能和機(jī)器視覺技術(shù)設(shè)計(jì)出一種檢測貝母、山楂及半夏飲片質(zhì)量方法[2]。張志光通過向YOLO4目標(biāo)檢測算法中加入Non-local注意力機(jī)制和RFB(Receptive Field Block,增強(qiáng)感受野)模塊來提升算法在復(fù)雜背景和不同尺度下中藥飲片的識別性能[3]。徐飛等通過強(qiáng)化特征提取改進(jìn)的AlexNet模型對5類中草藥葉片進(jìn)行訓(xùn)練并通過增廣數(shù)據(jù)集,提高了中草藥圖像分類的準(zhǔn)確率[4]。李鑫利用Faster- RCNN算法對黃芪、白術(shù)、白芷、白芨、西洋參五種藥材進(jìn)行訓(xùn)練并搭建了中藥飲片圖像識別模型[5]。

由于借助神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)中藥材識別需要大量的矩陣運(yùn)算、存儲空間和功耗,因此大多依賴圖形處理器(Graphic Processing Unit,GPU)或服務(wù)器實(shí)現(xiàn),不但成本較高,而且在實(shí)際使用中非常不便。然而微控制器(Microcontroller Unit, MCU)卻具有體積小、功耗低、成本低以及高實(shí)時性的優(yōu)勢。并且隨著輕量級神經(jīng)網(wǎng)絡(luò)模型和擁有高性能、高主頻且包含有算力擴(kuò)展的Cortex-M7內(nèi)核的MCU的出現(xiàn),使得在MCU平臺上實(shí)現(xiàn)中藥材識別變?yōu)榱丝赡堋?/p>

本文針對目前在MCU平臺無法實(shí)現(xiàn)復(fù)雜深度神經(jīng)網(wǎng)絡(luò)的應(yīng)用和中藥材圖像數(shù)據(jù)集不足的問題,提出了在MCU平臺實(shí)現(xiàn)基于MobileNetV3模型的中藥材圖像識別系統(tǒng)。借助eIQ機(jī)器學(xué)習(xí)軟件開發(fā)環(huán)境構(gòu)建MobileNetV3-Small模型,通過采用Hard-swish激活函數(shù)、Adam優(yōu)化器等,修改模型參數(shù)完成對中藥材數(shù)據(jù)集的訓(xùn)練與驗(yàn)證,并對模型進(jìn)行量化和壓縮操作,將最終生成的模型文件部署至i.MX RT1060開發(fā)板上,實(shí)現(xiàn)對中藥材的識別。



本文詳細(xì)內(nèi)容請下載:http://theprogrammingfactory.com/resource/share/2000005724




作者信息:

韓德強(qiáng),李宗耀,楊淇善,高雪園

(北京工業(yè)大學(xué) 信息學(xué)部,北京 100124)


微信圖片_20210517164139.jpg


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。