《電子技術應用》
您所在的位置:首頁 > 電源技術 > 解決方案 > pHEMT功率放大器的有源偏置解決方案

pHEMT功率放大器的有源偏置解決方案

2023-11-16
作者:Gweneivere Lasay,產品應用工程師
來源:ADI公司
關鍵詞: ADP5600 HMC920 LT8608

  摘要

  假晶高電子遷移率晶體管(pHEMT)是耗盡型器件,其漏源通道的電阻接近0 Ω。此特性使得這些器件可以在高開關頻率下以高增益運行。然而,如果柵極和漏極偏置時序不正確,漏極溝道的高電導率可能會導致器件燒毀。本文探討耗盡型pHEMT射頻(RF)放大器的工作原理以及如何對其有效偏置。耗盡型場效應晶體管(FET)需要負柵極電壓,并且必須小心控制開啟/關斷的時序。文中將介紹并比較固定柵極電壓和固定漏極電流電路。我們還將仔細研究這些偏置電路的噪聲和雜散對RF性能有何影響。

  引言

  圖1顯示了耗盡型pHEMPT RF放大器的簡化框圖。流經(jīng)器件的RF信號路徑是從柵極到漏極,交流耦合電容將RF信號與漏極和柵極上的直流偏置電壓去耦。主電源電壓通過電感施加到FET晶體管的漏極。

129.JPG

  圖1.耗盡型RF放大器的簡化架構。

  耗盡型器件的一個重要特性是,當柵極電壓等于0 V時,漏源電阻接近0 Ω。因此,要操作這種器件,必須對柵極施加負電壓。在圖1中,該電壓通過片上電感施加。

  這種偏置方法的一個缺點是,兩個電源不能同時開啟。在柵極偏置電壓之前施加漏極偏置電壓會導致漏極電流突然增加,從而很快燒毀器件。因此,必須首先施加負柵極偏置電壓來夾斷溝道。開啟和關閉放大器時,應使用表1中的步驟。

  表1.放大器步驟

130.JPG

  實踐中可以跳過夾斷步驟。例如,如果知道正常工作的最終柵極電壓,那么可以立即施加該電壓,而無需經(jīng)過夾斷步驟。

  固定柵極電壓偏置

  圖2顯示了耗盡型RF放大器建立并維持固定柵極電壓的電源管理電路。它使用開關穩(wěn)壓器、低壓差(LDO)穩(wěn)壓器和負載開關來產生漏極電壓。柵極電壓由ADP5600產生,該器件包含電壓逆變器和LDO穩(wěn)壓器。漏極電流由負電壓LDO穩(wěn)壓器的反饋電阻設置。為確保安全的電源時序,開關穩(wěn)壓器的使能(EN)引腳與負電壓發(fā)生器的電源良好(PGOOD)信號相連。這確保了負柵極電壓始終出現(xiàn)在漏極電壓之前。

圖片1.png

  圖2.固定柵極電壓偏置?!?/p>

圖片2.png

 圖3.固定漏極電流偏置(有源偏置控制)

  此電路的主要缺點是沒有考慮RF放大器VGATE與IDRAIN關系的器件間差異。漏極電流的器件間差異(假設柵極電壓固定)可能很大,導致每個電路具有不同的漏極電流。漏極電流差異通常會影響壓縮(OP1dB)和三階交調失真(OIP3)(增益也會受到影響,但程度較?。_@種方法的好處之一是漏極電流將根據(jù)RF輸入功率和RF輸出功率的變化而增加或減少。因此,如果RF輸入功率較低,功耗也會較低,反之亦然。

  有源偏置控制

  有源偏置控制是另一種方法。此技術不是固定柵極電壓,而是固定漏極電流。圖3中,有源偏置控制器通過測量漏極電流并改變柵極電壓來調節(jié)漏極電流,使該電流即使在不同的RF輸入條件下也能保持固定。此電路由LT8608 降壓穩(wěn)壓器和HMC920有源偏置控制器組成,后者可支持3 V至15 V的漏極電壓和高達500 mA的總漏極電流。

  HMC920內部的高電壓、高電流線性穩(wěn)壓器(LDOCC引腳)可產生3 V至15 V的正電壓和高達500 mA的電流。其輸出通過內部MOSFET開關連接至VDRAIN端口,用于控制電源時序。為了設置功率放大器所需的漏極電壓,必須使用公式1調整LDO穩(wěn)壓器的反饋電阻R5和R8:

131.JPG

  其中,VDRAIN是所需的漏極電壓值,IDRAIN是所需的漏極電流。常數(shù)0.5是內部MOSFET開關的RDS(ON)值。

  內部電荷泵產生負電壓VGATE。通過讀取RSENSE處的電壓,控制器檢測漏極電流并改變VGATE處的電壓。要設置漏極電流,必須使用公式2改變RSENSE(R4和R19):

132.JPG

  當通過施加電源電壓(VDD)開啟HMC920時,會有一個信號發(fā)送至EN引腳以啟動控制環(huán)路。VDRAIN最初會短接到地,以強制將其設為零。同時,VGATE處的電壓最初會被拉低至最小電壓VNEG。然后,VDRAIN將提高至設定的漏極電壓值。RSENSE上將產生電壓降,這會導致控制器改變柵極電壓。關斷期間,會有一個邏輯低電平信號發(fā)送至EN引腳。VGATE將降低至VNEG以切斷放大器,VDRAIN處的電壓將降至零。VGATE處的電壓最終將達到零。此周期遵循正確的電源時序,以確保耗盡型放大器安全運行。它還具有過流和欠流報警、短路保護、功率折返等安全特性。HMC920數(shù)據(jù)手冊中詳細解釋了該偏置控制器的其他安全機制。

  該偏置控制器用作ADL8106寬帶低噪聲放大器的電源管理解決方案。ADL8106的工作頻率范圍為20 GHz至54 GHz,標稱漏極電壓為3 V,靜態(tài)漏極電流為120 mA。圖4和圖5顯示了相關的開啟和關斷波形。

133.JPG

  圖4.開啟時的電源時序波形。一旦施加VDD,EN變?yōu)楦唠娖骄捅硎究刂骗h(huán)路啟動。首先開啟VGATE,然后開啟VDRAIN。

134.JPG

  圖5.關斷時的電源時序波形。當VDD被移除時,EN變?yōu)榈碗娖?。VGATE將再次降至最小電壓VNEG,VDRAIN將降至零。然后,VGATE最終將達到零。

  噪聲和雜散抑制

  RF放大器RF輸出端的雜散和噪聲水平將取決于HMC920的輸出噪聲和雜散,以及放大器的電源調制比(PSMR)。圖6顯示了開關穩(wěn)壓器(LT8608)輸入端以及VDRAIN和輸出端口的PSRR曲線。圖7和圖8顯示了VGATE和VDRAIN電壓的輸出頻譜?;贏DL8106的PSMR,這些圖中還包含了顯示最大允許輸出噪聲和雜散的跡線。電源管理電路的輸出噪聲和雜散必須低于這些水平,以確保放大器的性能不會因電源管理電路而降低。

135.JPG

  圖6.LT8608 + HMC920的電源電壓抑制比(VDD = 5 V,VDRAIN = 3 V,IDQ = 120 mA,VGATE = –0.64 V)。

136.JPG

  圖7.HMC920的VGATE和VDRAIN輸出頻譜以及ADL8106的最大允許噪聲限值。  

140.JPG

圖8.HMC920的VGATE和VDRAIN輸出頻譜以及ADL8106的最大允許噪聲限值。

  使用外部負電源操作HMC920

  在前面的示例中,HMC920的內部負電壓發(fā)生器用于生成負柵極電壓。此外也可以使用外部負電源,如圖9所示。在這種情況下,ADP5600(逆變器和負LDO穩(wěn)壓器)用作產生柵極電壓的負電源。與使用內部負電壓發(fā)生器相比,其結果是噪聲系數(shù)略低且增益略高。

137.JPG

  圖9.外部VNEG模式下的ADL8106和HMC920框圖。

138.JPG

圖10.使用HMC920的ADL8106在內部負電壓發(fā)生器模式和外部負電壓發(fā)生器模式下的噪聲系數(shù)。

139.JPG

  圖11.使用HMC920的ADL8106在內部負電壓發(fā)生器模式和外部負電壓發(fā)生器模式下的增益。

  該模式下的實際噪聲性能仍然取決于所用外部負電壓發(fā)生器所產生的輸出噪聲。從圖7和圖8中可以看出,在外部VNEG模式下使用HMC920也會產生噪聲雜散,這些雜散仍低于最大允許電壓紋波限值。要利用此模式,必須將VNEGFB引腳短接至地以禁用負電壓發(fā)生器的反饋控制。對于增強型放大器(正柵極電壓),VNEGFB和VGATEFB引腳都必須接地。

  結語

  耗盡型GaAs放大器因其寬帶寬和高動態(tài)范圍而廣泛用于RF應用。但是,此類放大器需要負偏置電壓,并且必須小心控制其電源時序??梢允褂霉潭ǖ呢摉艠O電壓來偏置這種放大器。其好處是電流消耗是動態(tài)的,隨著RF輸出電平而變化。本文介紹的電路使用固定漏極電流,產生低噪聲漏極和柵極電壓并安全控制其時序,這些電壓不會降低RF放大器的額定性能。這樣器件間的性能差異會更小,因為每個器件都以相同的漏極電流運行。然而,這種方法的一個缺點是漏極電流是固定的,不隨RF功率水平而變化。在決定固定漏極電流水平時應謹慎考慮,它必須足夠高才能支持所需的最大輸出功率水平,但又不能過高以至于導致電流浪費。雖然可以使用外部負電源代替HMC920的內部負電壓發(fā)生器,但對噪聲的改善作用微乎其微。



更多精彩內容歡迎點擊==>>電子技術應用-AET<< 

mmexport1621241704608.jpg

本站內容除特別聲明的原創(chuàng)文章之外,轉載內容只為傳遞更多信息,并不代表本網(wǎng)站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創(chuàng)文章及圖片等內容無法一一聯(lián)系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經(jīng)濟損失。聯(lián)系電話:010-82306118;郵箱:aet@chinaaet.com。