《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 模擬設(shè)計(jì) > 設(shè)計(jì)應(yīng)用 > 基于Kalman算法的大數(shù)據(jù)存儲架構(gòu)可擴(kuò)展性優(yōu)化算法
基于Kalman算法的大數(shù)據(jù)存儲架構(gòu)可擴(kuò)展性優(yōu)化算法
網(wǎng)絡(luò)安全與數(shù)據(jù)治理 11期
韓鎮(zhèn)陽,張磊,任冬
(武警陜西省總隊(duì),陜西西安710116)
摘要: 為了優(yōu)化大數(shù)據(jù)存儲架構(gòu)可擴(kuò)展性能,提高大數(shù)據(jù)架構(gòu)資源利用率,通過引入Kalman算法設(shè)計(jì)了一種大數(shù)據(jù)存儲架構(gòu)可擴(kuò)展性優(yōu)化算法。首先,綜合考慮大數(shù)據(jù)存儲架構(gòu)與多核環(huán)境內(nèi)存布局之間的兼容性,設(shè)計(jì)架構(gòu)內(nèi)存布局。其次,設(shè)計(jì)分布式共享內(nèi)存協(xié)議,確保各個(gè)進(jìn)程在訪問共享內(nèi)存時(shí)能夠正確地協(xié)同工作,提高存儲架構(gòu)的容錯(cuò)性。在此基礎(chǔ)上,利用Kalman算法,動(dòng)態(tài)調(diào)整存儲節(jié)點(diǎn)的負(fù)載,進(jìn)而優(yōu)化大數(shù)據(jù)存儲架構(gòu),以提高其可擴(kuò)展性。實(shí)驗(yàn)結(jié)果表明,應(yīng)用該算法后,大數(shù)據(jù)存儲架構(gòu)的資源利用率始終高于對照組,均達(dá)到了96%以上,最高達(dá)到了98%,架構(gòu)可擴(kuò)展性優(yōu)化效果顯著,服務(wù)器資源利用更充分,大規(guī)模數(shù)據(jù)處理更高效。
中圖分類號:TP311
文獻(xiàn)標(biāo)識碼:ADOI:10.19358/j.issn.2097-1788.2023.11.005
引用格式:韓鎮(zhèn)陽,張磊,任冬.基于Kalman算法的大數(shù)據(jù)存儲架構(gòu)可擴(kuò)展性優(yōu)化算法[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2023,42(11):25-28.
A scalability optimization algorithm for big data storage architecture based on Kalman algorithm
Han Zhenyang, Zhang Lei, Ren Dong
(Shanxi Provincial Corps of the Chinese People′s Armed Police Force, Xi′an 710116,China)
Abstract: In order to optimize the scalability performance of big data storage architecture and improve the resource utilization of big data architecture, a Kalman algorithm was introduced to design a scalability optimization algorithm for big data storage architecture. Firstly, considering the compatibility between big data storage architecture and multi core environment memory layout, design the architecture memory layout. Secondly, design a distributed shared memory protocol to ensure that various processes can work together correctly when accessing shared memory, and improve the fault tolerance of the storage architecture. On this basis, the Kalman algorithm is used to dynamically adjust the load of storage nodes and optimize the big data storage architecture to improve its scalability. The experimental results show that the resource utilization rate of the big data storage architecture is consistently higher than that of the control group, reaching over 96%, with a maximum of 98%. The scalability optimization effect of the architecture is significant, and the utilization of server resources is more sufficient, enabling more efficient processing of large-scale data.
Key words : Kalman algorithm; big data storage architecture; scalability optimization; shared memory protocol; node load

0引言

大數(shù)據(jù)存儲架構(gòu)是指在存儲、處理和分析大規(guī)模數(shù)據(jù)時(shí)所采用的技術(shù)架構(gòu)。從廣義角度分析,大數(shù)據(jù)存儲架構(gòu)是用于提取和處理海量數(shù)據(jù)并針對業(yè)務(wù)目的進(jìn)行分析整理的整體系統(tǒng),可視作基于機(jī)構(gòu)業(yè)務(wù)需求的大數(shù)據(jù)解決方案的藍(lán)圖[1]。大數(shù)據(jù)存儲架構(gòu)通常包括以下幾個(gè)主要組成部分:數(shù)據(jù)存儲層、數(shù)據(jù)處理層、數(shù)據(jù)分析層和數(shù)據(jù)可視化層。隨著大數(shù)據(jù)時(shí)代的來臨,信息資源數(shù)據(jù)的體量越來越龐大,大數(shù)據(jù)存儲架構(gòu)面臨著巨大的挑戰(zhàn)[2]。傳統(tǒng)的大數(shù)據(jù)存儲架構(gòu)通常采用中央式存儲方式,這種方式在處理大規(guī)模數(shù)據(jù)時(shí)存在著很多局限性,例如可擴(kuò)展性差、容錯(cuò)能力低等問題[3]。為了應(yīng)對挑戰(zhàn),研究者們提出了大數(shù)據(jù)存儲架構(gòu)可擴(kuò)展性優(yōu)化算法,對大數(shù)據(jù)存儲架構(gòu)進(jìn)行優(yōu)化,以提高其性能和可擴(kuò)展性。當(dāng)前,傳統(tǒng)的大數(shù)據(jù)存儲架構(gòu)可擴(kuò)展性優(yōu)化算法在實(shí)際應(yīng)用中以批處理為主,缺乏實(shí)時(shí)的支撐。面對需要快速響應(yīng)和處理的應(yīng)用場景,如實(shí)時(shí)分析、實(shí)時(shí)推薦等,仍然存在缺陷,且對業(yè)務(wù)支撐的靈活度效果不佳[4]。

Kalman算法是一種優(yōu)秀的估計(jì)算法,它具有很好的自適應(yīng)性和魯棒性,能夠?qū)?fù)雜系統(tǒng)進(jìn)行準(zhǔn)確的估計(jì)和預(yù)測[5]。在大數(shù)據(jù)存儲架構(gòu)中,Kalman算法可以用于數(shù)據(jù)的優(yōu)化和預(yù)測,采用分布式存儲方式,通過將數(shù)據(jù)分散到多個(gè)節(jié)點(diǎn)上進(jìn)行存儲和處理,提高數(shù)據(jù)的可擴(kuò)展性和容錯(cuò)能力,提高數(shù)據(jù)存儲和處理的效率?;诖耍疚囊隟alman算法來開展大數(shù)據(jù)存儲架構(gòu)可擴(kuò)展性優(yōu)化算法研究。


本文下載請點(diǎn)擊:基于Kalman算法的大數(shù)據(jù)存儲架構(gòu)可擴(kuò)展性優(yōu)化算法AET-電子技術(shù)應(yīng)用-最豐富的電子設(shè)計(jì)資源平臺 (chinaaet.com)




作者信息:

韓鎮(zhèn)陽,張磊,任冬

 (武警陜西省總隊(duì),陜西西安710116)


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。