人工智能時(shí)代反壟斷法的挑戰(zhàn):算法共謀的競(jìng)爭(zhēng)威脅與制度構(gòu)建
網(wǎng)絡(luò)安全與數(shù)據(jù)治理 11期
劉奕麟
(吉林大學(xué)法學(xué)院,吉林長春130000)
摘要: 算法共謀對(duì)市場(chǎng)造成的威脅主要表現(xiàn)為:一方面,軸輻算法通過使用相同的第三方平臺(tái)來決定他們的定價(jià)策略,從而形成一個(gè)輪輻機(jī)制,促進(jìn)了信息的交換;另一方面,自學(xué)習(xí)算法可以在沒有信息共享或明確的協(xié)調(diào)行為的情形下,達(dá)成隱蔽的自主性共謀以促成規(guī)避競(jìng)爭(zhēng)的效果。而目前反壟斷法的分析框架在解決算法共謀的認(rèn)定問題上掣襟露肘。主要表現(xiàn)為:算法共謀在技術(shù)上存在著隱蔽性并難以證明,串通行為的認(rèn)定存在爭(zhēng)議,算法共謀的歸責(zé)標(biāo)準(zhǔn)缺位。首先,在制度層面,既要注重公平競(jìng)爭(zhēng)與消費(fèi)者保護(hù),也要兼顧效率目標(biāo),來開展算法技術(shù)創(chuàng)新和發(fā)展。其次,在技術(shù)標(biāo)準(zhǔn)層面,擴(kuò)展更新現(xiàn)有標(biāo)準(zhǔn)中關(guān)于串通的定義和協(xié)同行為的認(rèn)定范圍,解決算法黑箱與算法共謀的隱蔽性問題。最后,構(gòu)建和明確算法共謀的責(zé)任歸屬,經(jīng)營者對(duì)算法共謀結(jié)果的疏忽可以被解釋為具有反競(jìng)爭(zhēng)的意圖。
中圖分類號(hào):D922
文獻(xiàn)標(biāo)識(shí)碼:A
DOI:10.19358/j.issn.2097-1788.2023.11.011
引用格式:劉奕麟.人工智能時(shí)代反壟斷法的挑戰(zhàn):算法共謀的競(jìng)爭(zhēng)威脅與制度構(gòu)建[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2023,42(11):58-63,79.
文獻(xiàn)標(biāo)識(shí)碼:A
DOI:10.19358/j.issn.2097-1788.2023.11.011
引用格式:劉奕麟.人工智能時(shí)代反壟斷法的挑戰(zhàn):算法共謀的競(jìng)爭(zhēng)威脅與制度構(gòu)建[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2023,42(11):58-63,79.
The challenge of Antitrust Law in the AI era: the competitive threat of algorithmic collusion and rule improvement
Liu Yilin
(School of Law, Jilin University, Changchun 130000,China)
Abstract: Algorithmic collusion poses a threat to the marketplace in that, on the one hand, Hub and Spoke Complicity uses the same third-party platforms to determine their pricing strategies, thus creating a Hub-and-Spoke setup that facilitates the exchange of information; on the other hand, Digital Eye can enter into covert autonomous conspiracies to facilitate competition avoidance without information sharing or explicit coordination behavior. The current analytical framework of Antitrust Law is limited in addressing the issue of algorithmic conspiracy. This dilemma is mainly manifested by the technical concealment and difficulty in proving algorithmic collusion, the controversial determination of collusion, and the lack of attribution criteria for algorithmic conspiracy. Therefore, at the level of institutional improvement, it is necessary to take into account both fair competition and consumer protection as well as efficiency goals, and not to inhibit the technological innovation and development of algorithms. Secondly, it is necessary to expand and update the definition of collusion and the criteria for identifying collaborative behavior in the existing regulations, so as to technically solve the problem of the concealment of algorithmic black box and algorithmic collusion. Finally, construct and clarify the attribution of responsibility for algorithmic collusion, and the operator′s negligence in the result of algorithmic collusion can be interpreted as having the intention to restrict competition.
Key words : algorithmic collusion; cooperative behavior; Hub and Spoke Complicity; self-learning algorithm; antitrust law
1算法共謀對(duì)市場(chǎng)競(jìng)爭(zhēng)的挑戰(zhàn)
算法本質(zhì)上是將輸入轉(zhuǎn)換為輸出的一系列操作。在OECD 2017年的研究報(bào)告中,將算法定義為:“算法是一組明確的、精確的、簡單操作的列表,這些操作被機(jī)械地和系統(tǒng)地應(yīng)用于一組指令或物體,例如,國際象棋棋子的配置、數(shù)字、蛋糕成分等。”指令的初始狀態(tài)是輸入,最后的狀態(tài)是輸出。[1]算法基于其開發(fā)和使用目的的不同,可以按照其功能類型進(jìn)行有效的分類,具體可以劃分為11個(gè)類別[2],如表1所示。
本文下載請(qǐng)點(diǎn)擊:人工智能時(shí)代反壟斷法的挑戰(zhàn):算法共謀的競(jìng)爭(zhēng)威脅與制度構(gòu)建AET-電子技術(shù)應(yīng)用-最豐富的電子設(shè)計(jì)資源平臺(tái) (chinaaet.com)
作者信息:
劉奕麟
(吉林大學(xué)法學(xué)院,吉林長春130000)
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。