《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 人工智能 > 設(shè)計(jì)應(yīng)用 > 基于深度學(xué)習(xí)的無(wú)監(jiān)督領(lǐng)域自適應(yīng)語(yǔ)義分割算法綜述
基于深度學(xué)習(xí)的無(wú)監(jiān)督領(lǐng)域自適應(yīng)語(yǔ)義分割算法綜述
電子技術(shù)應(yīng)用
應(yīng)俊杰1,2,樓陸飛1,2,辛宇1,2
1.寧波大學(xué) 信息科學(xué)與工程學(xué)院, 浙江 寧波315211;2.浙江省移動(dòng)網(wǎng)應(yīng)用技術(shù)重點(diǎn)實(shí)驗(yàn)室,浙江 寧波315211
摘要: 隨著現(xiàn)代生活逐步智能化,越來(lái)越多的應(yīng)用需要從圖像中推斷相應(yīng)的語(yǔ)義信息再進(jìn)行后續(xù)的處理,如虛擬現(xiàn)實(shí)、自動(dòng)駕駛和視頻監(jiān)控等應(yīng)用。目前的語(yǔ)義分割模型利用大量標(biāo)注數(shù)據(jù)進(jìn)行有監(jiān)督訓(xùn)練能達(dá)到理想的性能,但模型對(duì)與訓(xùn)練數(shù)據(jù)不同分布的數(shù)據(jù)進(jìn)行推理時(shí),其性能?chē)?yán)重下降。這意味著一旦應(yīng)用場(chǎng)景發(fā)生變化,就需對(duì)新場(chǎng)景的數(shù)據(jù)進(jìn)行標(biāo)注。模型重新利用新數(shù)據(jù)進(jìn)行訓(xùn)練,才能達(dá)到正常的性能。這無(wú)疑是耗時(shí)的、代價(jià)昂貴的。為此,領(lǐng)域自適應(yīng)語(yǔ)義分割算法提供了解決模型在分布不一致數(shù)據(jù)上語(yǔ)義分割性能下降問(wèn)題的思路。總結(jié)了領(lǐng)域自適應(yīng)語(yǔ)義分割算法的前沿進(jìn)展,并對(duì)未來(lái)研究方向進(jìn)行展望。
中圖分類(lèi)號(hào):TP391.4 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.234261
中文引用格式: 應(yīng)俊杰,樓陸飛,辛宇. 基于深度學(xué)習(xí)的無(wú)監(jiān)督領(lǐng)域自適應(yīng)語(yǔ)義分割算法綜述[J]. 電子技術(shù)應(yīng)用,2024,50(1):1-9.
英文引用格式: Ying Junjie,Lou Lufei,Xin Yu. A survey of unsupervised domain adaptive semantic segmentation algorithms based on deep learning[J]. Application of Electronic Technique,2024,50(1):1-9.
A survey of unsupervised domain adaptive semantic segmentation algorithms based on deep learning
Ying Junjie1,2,Lou Lufei1,2,Xin Yu1,2
1.College of Information Science and Engineering, Ningbo University, Ningbo 315211, China; 2.Key Laboratory of Mobile Network Application Technology of Zhejiang Province, Ningbo 315211, China
Abstract: As modern life becomes increasingly intelligent, more and more applications require inferring semantic information from images before proceeding with further processing, such as virtual reality, autonomous driving, and video surveillance. Current semantic segmentation models achieve ideal performance through supervised training with a large amount of annotated data, but their performance severely deteriorates when inferring on data with a distribution different from the training data. This means that once the application scenario changes, new data needs to be annotated and the model needs to be retrained with the new data in order to achieve normal performance. This is undoubtedly time-consuming and expensive. Therefore, domain adaptive semantic segmentation algorithms provide a solution to the problem of the model's performance degradation on data with different distributions. This article summarizes the cutting-edge progress of domain adaptive semantic segmentation algorithms and looks forward to future research directions.
Key words : domain adaptive;semantic segmentation;deep learning

引言

語(yǔ)義分割是計(jì)算機(jī)視覺(jué)的基礎(chǔ)任務(wù)之一,它為圖像的每個(gè)像素進(jìn)行類(lèi)別預(yù)測(cè),目的是將圖像分割成若干個(gè)帶有語(yǔ)義的感興趣區(qū)域,以便后續(xù)的圖像理解和分析工作,推動(dòng)了自動(dòng)駕駛、虛擬現(xiàn)實(shí)、醫(yī)學(xué)影像分析和衛(wèi)星成像等領(lǐng)域的發(fā)展。近幾年來(lái),語(yǔ)義分割模型的性能有著巨大的提升。然而,模型的性能依賴于大量人工標(biāo)注的訓(xùn)練數(shù)據(jù),這些數(shù)據(jù)的標(biāo)注是十分耗時(shí)且代價(jià)昂貴的,純?nèi)斯?biāo)注一張圖的時(shí)間甚至可能超過(guò)一個(gè)小時(shí)。即使現(xiàn)在使用半自動(dòng)化標(biāo)注工具自動(dòng)生成一部分標(biāo)注,可以減少標(biāo)注的時(shí)間,但仍然需要人工去調(diào)整和檢查自動(dòng)生成的標(biāo)注。語(yǔ)義分割模型需要在與訓(xùn)練數(shù)據(jù)分布一致的數(shù)據(jù)上才能獲得優(yōu)異的性能,而為另一不同分布的數(shù)據(jù)進(jìn)行語(yǔ)義標(biāo)注的代價(jià)很大。


本文詳細(xì)內(nèi)容請(qǐng)下載:

http://theprogrammingfactory.com/resource/share/2000005825


作者信息:

應(yīng)俊杰1,2,樓陸飛1,2,辛宇1,2

(1.寧波大學(xué) 信息科學(xué)與工程學(xué)院, 浙江 寧波315211;2.浙江省移動(dòng)網(wǎng)應(yīng)用技術(shù)重點(diǎn)實(shí)驗(yàn)室,浙江 寧波315211)


weidian.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。