《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 模擬設(shè)計 > 設(shè)計應(yīng)用 > 基于深度自編碼器的智能電網(wǎng)竊電網(wǎng)絡(luò)攻擊異常檢測
基于深度自編碼器的智能電網(wǎng)竊電網(wǎng)絡(luò)攻擊異常檢測
電子技術(shù)應(yīng)用
黃燕1,李金燦1,楊霞琴2,李佩2,李梓3
1.廣西電網(wǎng)有限責(zé)任公司,廣西 南寧 530023;2.廣西電網(wǎng)有限責(zé)任公司南寧供電局,廣西 南寧 530000; 3.廣西電網(wǎng)有限責(zé)任公司梧州供電局,廣西 梧州 543002
摘要: 現(xiàn)有AMIs中的異常檢測器存在淺層架構(gòu),難以捕獲時間相關(guān)性以及電力消耗數(shù)據(jù)中存在的復(fù)雜模式,從而影響檢測性能。提出基于長短期記憶(LSTM)的序列對序列(seq2seq)結(jié)構(gòu)的深度(堆棧)自編碼器。自動編碼器結(jié)構(gòu)的深度有助于捕獲數(shù)據(jù)的復(fù)雜模式,seq2seq LSTM模型可以利用數(shù)據(jù)的時間序列特性。研究了簡單自編碼器、變分自編碼器和注意自編碼器(AEA)的性能,得出在這3種自編碼器采用seq2seq結(jié)構(gòu)時檢測性能優(yōu)于全連接結(jié)構(gòu)。仿真結(jié)果表明,帶有注意力機制的檢測器(AEA)檢出率和虛警率分別比現(xiàn)有性能最好的檢測器高4%~21%和4%~13%。
中圖分類號:TM28 文獻標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.234395
中文引用格式: 黃燕,李金燦,楊霞琴,等. 基于深度自編碼器的智能電網(wǎng)竊電網(wǎng)絡(luò)攻擊異常檢測[J]. 電子技術(shù)應(yīng)用,2024,50(2):76-82.
英文引用格式: Huang Yan,Li Jincan,Yang Xiaqin,et al. Anomaly detection of smart grid stealing network attacks based on deep autoencoder[J]. Application of Electronic Technique,2024,50(2):76-82.
Anomaly detection of smart grid stealing network attacks based on deep autoencoder
Huang Yan1,Li Jincan1,Yang Xiaqin2,Li Pei2,Li Zi3
1.State Grid Guangxi Power Supply Company,Nanning 530023, China;2.State Grid Nanning Power Supply Company,Nanning 530000, China;3.State Grid Wuzhou Power Supply Company,Wuzhou 543002, China
Abstract: Existing anomaly detectors in AMIs suffer from shallow architectures, which impede their ability to capture temporal correlations and complex patterns in electricity consumption data, thus impact detection performance adversely. A deep (stacked) autoencoder structure based on Long Short-Term Memory (LSTM) with a sequence-to-sequence (seq2seq) configuration is proposed. The depth of the autoencoder architecture is beneficial for capturing complex data patterns, and the seq2seq LSTM model effectively utilizes the temporal sequential characteristics of the data. The performance of simple autoencoders, variational autoencoders, and Attention Enhanced Autoencoders (AEA) was studied, revealing that using the seq2seq structure in these three types of autoencoders results in superior detection performance compared to fully connected architectures. Simulation results demonstrate that the detector with an attention mechanism (AEA) achieves a 4%~21% higher detection rate and a 4%~13% lower false alarm rate compared to the best-performing existing detectors.
Key words : autoencoder;deep machine learning;power stealing;hyperparameter optimization;sequence-to-sequence

引言

電力盜竊不僅會使電網(wǎng)過載,還會對電網(wǎng)的穩(wěn)定性和效率產(chǎn)生負面影響。因此提出了使用機器學(xué)習(xí)模型來識別電力盜竊[1-2]。基于機器學(xué)習(xí)的檢測器包括監(jiān)督分類器和異常檢測器。監(jiān)督分類器包括淺層機器學(xué)習(xí)分類器,如樸素貝葉斯[3]和支持向量機(SVM)[4],還有基于決策樹和SVM的兩步檢測器[5]。雖然上述分類器檢測準(zhǔn)確率高,但過于依賴于客戶耗電數(shù)據(jù)的良性和惡意樣本的可用性,只能檢測到已經(jīng)訓(xùn)練過的攻擊類型。


本文詳細內(nèi)容請下載:

http://theprogrammingfactory.com/resource/share/2000005859


作者信息:

黃燕1,李金燦1,楊霞琴2,李佩2,李梓3

1.廣西電網(wǎng)有限責(zé)任公司,廣西 南寧 530023;2.廣西電網(wǎng)有限責(zé)任公司南寧供電局,廣西 南寧 530000; 3.廣西電網(wǎng)有限責(zé)任公司梧州供電局,廣西 梧州 543002


weidian.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。