《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于時序向量相似性的空間目標群匹配技術研究
基于時序向量相似性的空間目標群匹配技術研究
網絡安全與數據治理
張學文,于興偉,侯鑫宇,姚云鵬,范光明
(解放軍95921部隊,山東濟南250000)
摘要: 分析了空間低軌目標群的運行特點,提出了基于時序向量相似性的空間目標群匹配算法,提高了對低軌巨型星座的識別管理能力。首先,介紹了時序向量的降維方法,將目標群高維觀測時序向量簡化為空間構型序列;而后,提出了基于動態(tài)時間規(guī)整(Dynamic Time Warping,DTW)的目標群空間構型序列相似性判別算法;最后,利用星鏈衛(wèi)星目標群仿真和實測數據對算法的匹配能力進行驗證。結果表明該算法可實現空間目標群監(jiān)測數據快速匹配,仿真數據匹配過程中,在群內目標缺失30%的條件下匹配成功率可達100%,在低缺失條件下(缺失率5%以內)群內目標識別成功率平均超過75%;實測數據匹配成功率可達100%。
中圖分類號:TN953文獻標識碼:ADOI: 10.19358/j.issn.2097-1788.2024.02.005
引用格式:張學文,于興偉,侯鑫宇,等. 基于時序向量相似性的空間目標群匹配技術研究[J].網絡安全與數據治理,2024,43(2):29-36.
Research on space target group matching technology based on time series vector similarity
Zhang Xuewen,Yu Xingwei,Hou Xinyu,Yao Yunpeng,Fan Guangming
The Unit 95921 of PLA, Jinan 250000, China
Abstract: This article analyzes the motion characteristics of loworbit space target groups and proposes a space target group matching algorithm based on time series vector similarity, which improves the recognition and management ability of low orbit satellite constellations. Firstly, this article introduces the dimensionality reduction method of time series vectors, which simplifies the highdimensional observation time series vectors of the target group into spatial configuration sequences. Secondly, an algorithm based on Dynamic Time Warping (DTW) is proposed to identify the phase sequence similarity of observed data of target group. Finally, the matching ability of the algorithm is verified by the simulation and measured data of Starlink satellite target group. The results show that this algorithm can match the observed data of the space target group rapidly. During the simulation data matching process, the success rate of matching can reach 100% under the condition of 30% random missing targets within the group, and the average success rate of target recognition within the group exceeds 75% under low missing conditions (with a missing rate of less than 5%). The success rate of matching real observed data can also reach 100%.
Key words : low orbit space target group; time series vector; dynamic time warping; similarity identify

引言

近年來,全球范圍內掀起了低軌互聯(lián)網星座建設的浪潮,隨著“星鏈(Starlink)”“一網(OneWeb)”等多個衛(wèi)星星座系統(tǒng)成功入軌,人們對空間低軌資源使用[1]、低軌巨型星座高效管理[2]等領域產生了極大關注。低軌巨型星座的快速發(fā)展,導致低軌空間目標數量的迅猛增長,不僅為航天器在軌運行、載人航天等活動帶來巨大風險[3],也為空間目標編目管理提出了更高的要求。同時,星鏈等低軌星座形成的對地觀測、定位、通信、控制等體系能力,對相關工作中偵察、判斷、決策等方面產生深刻影響[4-5]。由于“星鏈”等低軌巨型星座發(fā)射頻次高、衛(wèi)星規(guī)模龐大,采用一箭多星方式的發(fā)射入軌[6-7],入軌初期衛(wèi)星以集群方式運行在低地球軌道,過境地基雷達視場時通常呈現為復雜目標群形式。群內各目標在一段時間內保持空間相對位置固定、速度相似的特點,造成目標間相互遮擋干擾地基雷達對目標群的完整觀測。入軌后,“星鏈”等衛(wèi)星在星載電推力器作用下,將運行軌道抬升至目標軌道,衛(wèi)星目標群在電推力的作用下逐漸散開。


作者信息:

張學文,于興偉,侯鑫宇,姚云鵬,范光明

(解放軍95921部隊,山東濟南250000)


文章下載地址:http://theprogrammingfactory.com/resource/share/2000005899


weidian.jpg

此內容為AET網站原創(chuàng),未經授權禁止轉載。