《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > 基于深度學習技術的水稻環(huán)境因素產量預測
基于深度學習技術的水稻環(huán)境因素產量預測
電子技術應用
張春磊1,2,3,李顏娥1,2,3,丁煜1,2,3,羅煦欽4
1.浙江農林大學 數學與計算機學院;2.浙江省林業(yè)智能監(jiān)測與信息技術實驗室; 3.林業(yè)感知技術與智能裝備國家林業(yè)局重點實驗室; 4.杭州市臨安區(qū)農業(yè)農村信息服務中心
摘要: 水稻作為全球重要的糧食作物,準確預測水稻產量在農業(yè)發(fā)展中起著重要作用。由于水稻在環(huán)境因子與其生長機理的作用下往往呈現出非線性的特點,難以對其做出較為準確的預測,因此,提出CE-CGRU水稻產量預測模型,對非線性環(huán)境因子Copula熵(CE)方法進行提取特征并與CNN和GRU技術結合在一起。其目的是在水稻品種確定的條件下,識別產量預測的重要特征。根據使用浙江省臨安區(qū)真實數據分析和比較所提出的模型的性能,構建了其他5個產量預測模型進行對比,分別是MLR、RF、LSTM、GRU和CNN-LSTM。結果顯示,CE-CGRU模型的MAE、MSE和MAPE分別為0.677、0.87和5.029%,表明CE-CGRU模型具有更好的能力來捕捉水稻產量與環(huán)境因素之間的復雜非線性關系。此外,還對不同的特征選擇方法以及不同時間步長進行了比較和分析。
中圖分類號:TP18 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.234657
中文引用格式: 張春磊,李顏娥,丁煜,等. 基于深度學習技術的水稻環(huán)境因素產量預測[J]. 電子技術應用,2024,50(4):81-86.
英文引用格式: Zhang Chunlei,Li Yan′e,Ding Yu,et al. Prediction of rice yield with environmental factors based on deep learning technology[J]. Application of Electronic Technique,2024,50(4):81-86.
Prediction of rice yield with environmental factors based on deep learning technology
Zhang Chunlei1,2,3,Li Yan′e1,2,3,Ding Yu1,2,3,Luo Xuqin4
1.College of Mathematics and Computer Science, Zhejiang A&F University; 2.Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province; 3.China Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment; 4.Hangzhou Lin'an District Agricultural and Rural Information Service Center
Abstract: Rice is a globally important staple crop, and the accurate prediction of rice yield plays a significant role in agricultural development. Due to the influence of external environmental factors and the growth mechanisms of rice, rice yield often exhibits nonlinear characteristics, making it challenging to make precise predictions. Therefore, the CE-CGRU rice yield prediction model is proposed, which extracts features using the Copula Entropy (CE) method for nonlinear environmental factors and combines them with CNN and GRU technologies. The aim is to identify crucial features for yield prediction under specific rice varieties.Based on the analysis and performance comparison using real data from Lin'an District of Zhejiang Province, the proposed model is compared to five other yield prediction models: MLR, RF, LSTM, GRU, and CNN-LSTM. The results indicate that the CE-CGRU model achieves a MAE of 0.677, a MSE of 0.87, and a MAPE of 5.029%, demonstrating its superior capability in capturing the complex nonlinear relationship between rice yield and environmental factors. Furthermore, a comparison and analysis of different feature selection methods and time steps are conducted.
Key words : rice yield prediction;Copula Entropy;deep learning;CE-CGRU

引言

作為世界三大主要糧食作物之一,水稻產量顯著影響農業(yè)生產結果,并與社會和農業(yè)發(fā)展有廣泛的聯系[1]。因此,在當前強大的農業(yè)信息技術時代,準確預測水稻產量在隨后的經濟發(fā)展、解決糧食安全問題和調整農業(yè)政策方面發(fā)揮著關鍵作用。水稻的栽培不僅受到品種本身特性的影響,還受到諸如溫度、濕度、日照時數等多種環(huán)境因素的影響,這使得構建反映這些因素與作物產量之間復雜關系的準確模型成為一項挑戰(zhàn)。對于特定品種的水稻,其產量主要受到環(huán)境因素和一致的管理水平的影響。因此,建立一個具有水稻生長季環(huán)境因素的準確的水稻產量預測模型至關重要。


本文詳細內容請下載:

http://theprogrammingfactory.com/resource/share/2000005953


作者信息:

張春磊1,2,3,李顏娥1,2,3,丁煜1,2,3,羅煦欽4

(1.浙江農林大學 數學與計算機學院,浙江 杭州 311300;2.浙江省林業(yè)智能監(jiān)測與信息技術實驗室, 浙江 杭州 311300;

3.林業(yè)感知技術與智能裝備國家林業(yè)局重點實驗室, 浙江 杭州 311300;

4.杭州市臨安區(qū)農業(yè)農村信息服務中心, 浙江 杭州 310000)


Magazine.Subscription.jpg

此內容為AET網站原創(chuàng),未經授權禁止轉載。