《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 電源技術(shù) > 設(shè)計(jì)應(yīng)用 > 基于L4981B的APFC電路設(shè)計(jì)性能優(yōu)化
基于L4981B的APFC電路設(shè)計(jì)性能優(yōu)化
摘要: 電源是每一個(gè)電子設(shè)備所必須的重要組成部分。按照國(guó)際電工委員會(huì)標(biāo)準(zhǔn)IEC 61000—3—2的要求,電子設(shè)備輸入電流中諧波電流成分都有一定的限值,小功率電源可以使用簡(jiǎn)單的無(wú)源功率因數(shù)校正,即可獲得有效的抑制,而大功率電源則普遍使用有源功率因數(shù)校正控制器。作為在較大功率電源中普遍使用的基于L4891B設(shè)計(jì)的APFC已有諸多介紹,但在實(shí)際電源設(shè)備的使用過(guò)程中,由于工作環(huán)境和使用要求的不同往往會(huì)出現(xiàn)這樣或那樣的問(wèn)題,而限制和影響了它的廣泛使用。
Abstract:
Key words :

  O 引 言

  電源是每一個(gè)電子設(shè)備所必須的重要組成部分。按照國(guó)際電工委員會(huì)標(biāo)準(zhǔn)IEC 61000—3—2的要求,電子設(shè)備輸入電流中諧波電流成分都有一定的限值,小功率電源可以使用簡(jiǎn)單的無(wú)源功率因數(shù)校正,即可獲得有效的抑制,而大功率電源則普遍使用有源功率因數(shù)校正控制器。作為在較大功率電源中普遍使用的基于L4891B設(shè)計(jì)的APFC已有諸多介紹,但在實(shí)際電源設(shè)備的使用過(guò)程中,由于工作環(huán)境和使用要求的不同往往會(huì)出現(xiàn)這樣或那樣的問(wèn)題,而限制和影響了它的廣泛使用。鑒于此,針對(duì)在此過(guò)程中出現(xiàn)的諸多問(wèn)題進(jìn)行了深入分析和探討,并提出了一些切實(shí)可行的有效解決方案。

  1 如何提高效率

  現(xiàn)代技術(shù)的發(fā)展要求電器設(shè)備,既要小巧,又要高效,還要求輸入電壓具有更廣泛的通用性。一個(gè)完整的Boost APFC包括全波整流和升壓型DC—DC轉(zhuǎn)換,這種配置的APFC具有許多優(yōu)點(diǎn):連續(xù)輸入電流和容易提高功率因數(shù)。升壓型拓?fù)浣Y(jié)構(gòu)通過(guò)限制輸入電壓也可以獲得很高的效率,但當(dāng)輸入電壓范圍變寬后,要維持同樣的高效率就變得有些困難。

  為此在實(shí)際的應(yīng)用產(chǎn)品中,采用電路簡(jiǎn)單、可靠性較高的3種方法:一是減小半導(dǎo)體二極管的反向恢復(fù)損耗;二是用IGBT代替MOSFET,以減小開(kāi)通損耗;再就是減小交流損耗。

  首先,選用一種SiC肖特基二極管,它具有高的溫度特性(最高允許工作溫度達(dá)到300℃),高的反向耐壓,低的導(dǎo)通電阻和高的開(kāi)關(guān)頻率等。以上特點(diǎn)使得開(kāi)關(guān)器件體積縮小,開(kāi)關(guān)頻率的提高也使得。Boost APFC的體積進(jìn)一步減小。同時(shí)它還具有正的溫度系數(shù),便于在大電流時(shí)采用多個(gè)二極管并聯(lián)使用,不會(huì)造成二極管之間的電流出現(xiàn)不均衡的現(xiàn)象。再有這種二極管的反向恢復(fù)時(shí)間及反向電流都非常小,并且有非常好的溫度特性,其反向恢復(fù)時(shí)間不會(huì)隨著溫度升高而變化。用它就會(huì)減小開(kāi)關(guān)管導(dǎo)通時(shí)的開(kāi)關(guān)損耗,從而提高效率。

  其次,用IGBT代替MOsFET,一個(gè)主要的原因是:MOSFET開(kāi)關(guān)在低輸入電壓時(shí),由于導(dǎo)通器件的漏源極間為導(dǎo)通電阻,使得其導(dǎo)通損耗快速增加,即隨著電流的增大而與電流的平方成正比。而IGBT則是集射極間的幾乎是相同的電壓飽和壓降,因此,其導(dǎo)通損耗相對(duì)增加較慢,只與輸入電流成線性關(guān)系。這就減小了在寬范圍輸入電壓下的損耗,提高了系統(tǒng)效率。

  最后,減小交流損耗,交流損耗的產(chǎn)生主要由電感的紋波電流造成的。絕大部分的損耗來(lái)自于磁心本身,并且嚴(yán)重依賴于磁心材料本身,為此采用非晶鐵心材料饒制的電感,因?yàn)樗哂袃?yōu)良的恒電感特性和抗直流偏磁能力,且損耗小。不過(guò)成本較貴,但對(duì)提高Boost APFC效率效果明顯。

  經(jīng)過(guò)調(diào)整后帶整流橋的Boost APFC的輸入功率與效率的關(guān)系,如下圖1所示。

調(diào)整后帶整流橋的Boost APFC的輸入功率與效率的關(guān)系

  2 如何提高穩(wěn)定性

  平均電流控制技術(shù)是在峰值電流控制技術(shù)的基礎(chǔ)上發(fā)展起來(lái)的。在這種控制方式中,乘法器與比較器之間增加了一個(gè)電流調(diào)節(jié)器。該電流調(diào)節(jié)器控制輸入電流的平均值,使其與編程信號(hào)波形相同,由于電流環(huán)具有較高的增益帶寬,跟蹤誤差小,因此瞬態(tài)特性較好。是目前應(yīng)用最廣泛的一種控制技術(shù)。

  這種技術(shù)的電壓環(huán)帶寬控制在20 Hz以下,電流環(huán)則要求足夠快以滿足不失真和低諧波的要求。事實(shí)是,在實(shí)際產(chǎn)品的設(shè)計(jì)過(guò)程中,經(jīng)由理論分析設(shè)計(jì)的電路在帶阻性負(fù)載或者交流變頻壓縮機(jī)測(cè)試時(shí),工作一切正常。但當(dāng)帶直流變頻壓縮機(jī)這類感性負(fù)載工作時(shí),就出現(xiàn)新的不穩(wěn)定現(xiàn)象見(jiàn)圖2,即遇到雙周期分叉現(xiàn)象。

雙周期分叉現(xiàn)象

  由于在整個(gè)設(shè)計(jì)過(guò)程中,存在許多理想假設(shè),例如:假設(shè)變換器的輸出紋波很?。患僭O(shè)當(dāng)通過(guò)較大輸出電容時(shí)可被忽略,而大電容因其成本高,體積大,在實(shí)際中使用中并沒(méi)有那么大;假設(shè)用輸入電壓有效值代替時(shí)變值,忽略其時(shí)變的影響等。另外由于PFC的固有屬性,PFC動(dòng)態(tài)環(huán)路總是用低帶寬進(jìn)行補(bǔ)償,目的是不對(duì)頻率2xfL的紋波產(chǎn)生響應(yīng),這里fL指交流電源線的頻率。因此,當(dāng)負(fù)載突變時(shí),調(diào)整電路不能做出快速響應(yīng),從而引起輸出電壓波動(dòng)過(guò)大。而穩(wěn)定系統(tǒng)自身可以調(diào)節(jié)擾動(dòng),使其重新進(jìn)入穩(wěn)定運(yùn)行狀態(tài);不穩(wěn)定系統(tǒng)無(wú)法控制擾動(dòng),從而進(jìn)入不穩(wěn)定運(yùn)行狀態(tài)。結(jié)果出現(xiàn)上述的雙周期現(xiàn)象。

  變換器輸出電容上的電壓是由輸入功率與輸出功率的差所形成的,輸入功率由乘法器的輸出電流控制,而乘法器的輸出電流又由前饋電流環(huán)及反饋電壓環(huán)共同決定。電壓前饋可用于補(bǔ)償輸入電壓引起的增益變化,提高回路的穩(wěn)定性和對(duì)交流電壓瞬變的瞬間響應(yīng)性。同時(shí),應(yīng)有盡可能高的穿越頻率,以實(shí)現(xiàn)快速跟蹤性能。應(yīng)有足夠的穩(wěn)定裕量,使系統(tǒng)有強(qiáng)的魯棒性。

  為了解決這個(gè)問(wèn)題,在芯片的外圍設(shè)計(jì)中采用了增強(qiáng)動(dòng)態(tài)響應(yīng)功能。使用高紋波、低等效串聯(lián)電阻(ESR)的電容,重新設(shè)計(jì)和調(diào)整電壓環(huán)、電流環(huán)網(wǎng)絡(luò)參數(shù),反復(fù)試驗(yàn),最后得出結(jié)論。即:仔細(xì)調(diào)節(jié)輸出電壓誤差放大器的輸出,使設(shè)計(jì)的電流環(huán)的瞬變跟蹤特性變強(qiáng),變換器在大電流和感性或阻性負(fù)載的情況下,皆具有更好的穩(wěn)定輸出電壓的能力,消除了雙周期現(xiàn)象的發(fā)生。功率因數(shù)與其他性能指標(biāo)正常,未有不良結(jié)果產(chǎn)生,達(dá)到了預(yù)期的目的。

 

  3 如何提高電磁兼容性

  電磁兼容性是指在同一電磁環(huán)境中,設(shè)備能夠不因?yàn)槠渌O(shè)備的影響正常工作,同時(shí)也不對(duì)其他設(shè)備產(chǎn)生影響工作的干擾。正基于此,干擾造成的原因有內(nèi)外2種,內(nèi)部干擾主要是主電路開(kāi)關(guān)過(guò)程對(duì)控制電路及外部電路造成的影響,外部干擾是電網(wǎng)的紋波和周圍用電設(shè)備對(duì)Boost PFC造成的干擾。針對(duì)干擾產(chǎn)生的3要素即干擾源、耦合途徑和敏感的接收設(shè)備,采用了以下措施:

  (1)合理的布局和布線。干擾強(qiáng)度是隨著導(dǎo)線和干擾源距離的平方而減小。所以,在電路元件的布局和布線上,盡量使交流輸入和直流輸出分開(kāi)并遠(yuǎn)離。布線要嚴(yán)格分開(kāi),簡(jiǎn)化電流通路的途徑,減少相互交叉干擾。

  (2)主電路和控制電路本身抗干擾措施。在主電路方面,單相整流橋輸入和輸出端都應(yīng)接高頻電容,以阻斷電網(wǎng)的高頻干擾。控制電路芯片的參考基準(zhǔn)電壓要穩(wěn)定,也應(yīng)接一個(gè)高頻去耦電容到地。

  此外,振蕩器定時(shí)電容到地的引線要盡可能短。開(kāi)關(guān)管的驅(qū)動(dòng)輸入端到控制芯片的輸出連線要盡可能短,以減小外界的雜散干擾。盡可能減小IGBT和FRD二極管連線的阻抗,即減小長(zhǎng)度,增加寬度。還有,IGBT與平滑電容之間的配線距離盡可能短。整個(gè)系統(tǒng)的強(qiáng)電部分要遵循進(jìn)出有序的原則,不能來(lái)回走線。 Boost PFC控制器的輸出電容也要并聯(lián)一個(gè)小的高壓電容,濾除高頻雜波。還有要減少芯片供電電源的干擾,例如可在電源輸出端接一高頻去耦電容到地,這樣就可以提高供電電源的品質(zhì)。降低外界干擾和內(nèi)部的相互影響,提高系統(tǒng)的電磁兼容性設(shè)計(jì)水平。

  使用L4981B的這種平均電流的升壓型模式制作的功率因數(shù)校正電路,輸入電流連續(xù)。并且在BoostPFC開(kāi)關(guān)瞬間輸入電流小,這本身就易于電磁干擾濾波。

  原則1:減少PFC電路自身產(chǎn)生的干擾控制開(kāi)關(guān)管的開(kāi)關(guān)速度(dv/dt);減小高di/dt通路的寄生電感,避免電路中產(chǎn)生不必要的諧振;降低開(kāi)關(guān)頻率。

  原則2:盡量阻止干擾傳遞到外界減少高dv/dt節(jié)點(diǎn)(例如:IGBT的集電極)與外界的電容耦合;減小高di/dt通路形成的回路面積,避免天線效應(yīng);增加電源輸入端的濾波。

  散熱片的接法:散熱片盡量與地?cái)嚅_(kāi),APFC的散熱片應(yīng)該和APFC電路的冷點(diǎn)之間有低阻抗的交流通路,該通路可以通過(guò)直接連接或者串聯(lián)一個(gè)幾nF的Y電容。Y電容的取值應(yīng)考慮電路中dv/dt器件與散熱片之間的寄生電容,如果電Y電容比寄生電容大n倍,通過(guò)散熱片耦合到外界的共模干擾也將減小n倍。

  APFC電感對(duì)電磁兼容的影響:在電感與開(kāi)關(guān)管相連一端的導(dǎo)線,應(yīng)盡量靠近PFC電路的地方,串聯(lián)1個(gè)磁環(huán);盡量使用環(huán)形的電感材料以減少漏磁。

  控制芯片L4981B所特有的頻率抖動(dòng)的調(diào)制方式,使得原本單一的開(kāi)關(guān)信號(hào)頻率在某個(gè)范圍抖動(dòng),形成連續(xù)的頻譜,最終降低頻譜峰值,減小電磁干擾。

  開(kāi)關(guān)頻率抖動(dòng)控制方法通過(guò)調(diào)整抖動(dòng)開(kāi)關(guān)頻率,把集中在開(kāi)關(guān)頻率及其諧波上的能量分散到它們周圍的變頻帶上(見(jiàn)圖3),由此降低各個(gè)頻點(diǎn)上的電磁干擾幅值,以達(dá)到低于電磁干擾標(biāo)準(zhǔn)規(guī)定的限值。

固定頻率及頻率抖動(dòng)控制頻譜分析

  這種方法雖然不能使總的干擾能量降低,但它把干擾能量分散到較寬的頻帶,從而使Boost PFC更容易達(dá)到低于電磁干擾標(biāo)準(zhǔn)規(guī)定的限值。

  從實(shí)際意義上講,干擾能量被分散在一定頻帶帶寬內(nèi),與能量集中的點(diǎn)頻脈沖干擾相比,電磁干擾對(duì)環(huán)境的危害有所降低。頻率抖動(dòng)控制在改變頻率的同時(shí),不會(huì)對(duì)占空比產(chǎn)生影響,也就不會(huì)影響輸出電壓。

  試驗(yàn)表明,頻率抖動(dòng)控制通過(guò)把集中在開(kāi)關(guān)頻率及其倍數(shù)頻率點(diǎn)上的干擾能量分散到其附近的頻帶上,使得最大干擾幅值及其他諧波點(diǎn)幅值都得到明顯降低;同時(shí)該控制方法保持輸出電壓不變,對(duì)輸出電壓的電磁干擾也同樣起到了抑制作用。

  4 如何實(shí)現(xiàn)電路保護(hù)

  有些保護(hù)是芯片本身就帶有的,例如:輸入欠壓保護(hù)、輸入過(guò)流保護(hù)、輸出過(guò)壓保護(hù)等。這只要按照芯片的功能,對(duì)電路進(jìn)行合理的設(shè)計(jì),進(jìn)行參數(shù)配置即可,這里就不再詳述。而有些保護(hù)是芯片本身沒(méi)有的,而又是系統(tǒng)所必須的,這樣就必須根據(jù)具體情況進(jìn)行具體分析,設(shè)計(jì)出適合系統(tǒng)所需要的保護(hù)電路,即故障保護(hù)電路,也即輸出電壓出現(xiàn)低電壓時(shí),確保后面的變頻系統(tǒng)能夠迅速響應(yīng),以免造成不必要的損失。此設(shè)計(jì)采用的是如圖4所示的設(shè)計(jì)方法。

保護(hù)電路設(shè)計(jì)

  圖4中fault為通過(guò)電阻分壓后的待測(cè)電壓。該設(shè)計(jì)巧妙地利用了低成本可調(diào)分流基準(zhǔn)源TL431的基準(zhǔn)電壓特性,和外圍元件組成的具有溫度補(bǔ)償門限的單電源比較器。具體原理為:在參考端加上一個(gè)可變電壓后,會(huì)在陰極與陽(yáng)極之間輸出高+15 V或低+2.5 V電平的電壓,再通過(guò)發(fā)光二極管與二極管的降壓作用到光耦等器件上,在FAULT輸出高低電平,反饋回主控制器,從而起到故障檢測(cè)的作用。這種電路的優(yōu)點(diǎn)在于,電路成本低,且簡(jiǎn)單可靠。在試驗(yàn)中,性能表現(xiàn)良好。

 

  另外,為防止上電過(guò)程中的瞬間大電流損壞PFC中的二極管,必須在電源輸入端設(shè)有浪涌保護(hù)電路,例如,PTC電阻加繼電器。這樣確保了輸入電流的最大瞬時(shí)值在可控的范圍內(nèi),不致對(duì)電路造成損害。

  5 如何提高性價(jià)比、可靠性和電氣安規(guī)要求

  元器件數(shù)量的減少,線路設(shè)計(jì)的簡(jiǎn)單化,都使得整個(gè)系統(tǒng)的性能價(jià)格比提高,而且電路中的升壓電感L還能阻止快速的電壓、電流瞬變,提高了整個(gè)電路工作的可靠性。

  近年來(lái)經(jīng)濟(jì)科技的高速發(fā)展,使得對(duì)各類電器設(shè)備功率因數(shù)的要求越來(lái)越高,提高功率因數(shù)校正電路的性能成了一個(gè)既有理論價(jià)值有又現(xiàn)實(shí)意義的課題。提高是無(wú)止境的,隨著電力電子技術(shù)和相關(guān)學(xué)科的發(fā)展,提高APFC性能的方法必將越來(lái)越多。

  作為I類設(shè)備,應(yīng)滿足基本絕緣和接地的要求。這就要求:

  首先,接地良好,滿足接地點(diǎn)的電位差要求,要用防脫落墊圈,接地線要足夠粗,滿足接地連續(xù)性要求,同時(shí)在接地端要有接地符號(hào),在上電的時(shí)候,先于電源線L,N接通,在斷電的時(shí)候,后于電源線L,N斷開(kāi)。

  其次,電源初級(jí)強(qiáng)電部分與次級(jí)弱電部分的電氣間隙和爬電距離要滿足電源電壓或/和變壓器等相關(guān)初、次級(jí)間器件電壓的要求,這里面包括:開(kāi)關(guān)電源的變壓器內(nèi)部結(jié)構(gòu),跨接在電源強(qiáng)電部分與次級(jí)弱電部分的光耦的內(nèi)部和外部的電氣間隙和爬電距離符合要求,跨接電容采用Y1電容,工作電壓要滿足要求,并通過(guò)相應(yīng)的安全認(rèn)證,還有電源初、次級(jí)間還得滿足相應(yīng)高電壓的耐壓的要求。

  再次,裝置內(nèi)部的電源初級(jí)強(qiáng)電與次級(jí)弱電部分之間的連線的布局要符合安規(guī)的要求。做到初、次級(jí)間的連接線不能相互接觸或交叉,而應(yīng)當(dāng)采用各自不同的回路,同時(shí)要確保它們之間滿足安規(guī)中所要求的雙重絕緣或加強(qiáng)絕緣等,這樣既有利于達(dá)到安規(guī)的相關(guān)要求,對(duì)電磁干擾的抑制也有正面的影響,也是有益無(wú)害的。

  最后,在與其他電路的配合上,也要遵循同樣的要求。要考慮全局而不是局部的要求,這樣才能事半而功倍。

  6 結(jié) 語(yǔ)

  通過(guò)對(duì)使用L4981B設(shè)計(jì)的平均電流模式的有源功率因數(shù)校正控制器的改進(jìn)和完善,電路的性能更加穩(wěn)定,使用范圍也得到了進(jìn)一步的拓展,達(dá)到了預(yù)期的目標(biāo)即由研制性樣機(jī)到實(shí)際生產(chǎn)使用樣機(jī)的轉(zhuǎn)變。實(shí)踐證明以上方法不僅有效而且切實(shí)可行,真正實(shí)現(xiàn)了有源功率因數(shù)校正電路的總體性能優(yōu)化。這對(duì)于采用其他類似芯片設(shè)計(jì)的有源功率因數(shù)校正電路的性能提高也有一定的參考作用。

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。