?
1 引 言
?
目前,感應(yīng)加熱電源已廣泛用于金屬熔煉、透熱、焊接、彎管、表面淬火等熱加工和熱處理行業(yè)。然而傳統(tǒng)感應(yīng)加熱電源整流變換一般采用晶閘管相控整流或二極管不控整流方式,為獲得較為穩(wěn)定的直流電壓,整流后往往采用大電容儲(chǔ)能兼濾波,導(dǎo)致電網(wǎng)輸入側(cè)功率因數(shù)" title="功率因數(shù)">功率因數(shù)非常低,電流畸變,對(duì)電網(wǎng)造成諧波污染;此外,還對(duì)周?chē)白陨硐到y(tǒng)的信號(hào)產(chǎn)生嚴(yán)重的電磁干擾,系統(tǒng)效率降低。為了減小諧波電流、提高功率因數(shù),有必要采用功率因數(shù)校正技術(shù)(APFC)。
?
有多種實(shí)現(xiàn)APFC的方法,目前常采用APFC控制芯片實(shí)現(xiàn)網(wǎng)側(cè)功率因數(shù)校正,具有電路簡(jiǎn)單、控制方便、成本低的優(yōu)點(diǎn)。但對(duì)于已采用功能強(qiáng)大數(shù)字信號(hào)處理器(DSP)作為控制器的感應(yīng)加熱等復(fù)雜電源系統(tǒng),再使用專(zhuān)用PFC芯片反而會(huì)增加系統(tǒng)硬件成本,降低系統(tǒng)的集成度,而且調(diào)試不方便,更不利于系統(tǒng)升級(jí)。本文研究在使用DSP控制感應(yīng)加熱電源的基礎(chǔ)上,對(duì)輸入系統(tǒng)采取有源功率因數(shù)校正措施。實(shí)驗(yàn)結(jié)果表明,引入APFC技術(shù)后,網(wǎng)側(cè)輸入功率因數(shù)趨近于單位功率因數(shù),網(wǎng)側(cè)電流是與電壓同相的標(biāo)準(zhǔn)正弦波,減少了對(duì)電網(wǎng)的污染。
?
2 傳統(tǒng)感應(yīng)加熱電源及改進(jìn)
?
傳統(tǒng)的感應(yīng)加熱電源的主電路結(jié)構(gòu)如圖1所示,包括四個(gè)部分:不控整流、大電容儲(chǔ)能濾波、逆變電路和諧振負(fù)載。圖中通過(guò)不可控整流的方式將交流變?yōu)橹绷鳎偻ㄟ^(guò)大電容濾波變成比較穩(wěn)定的直流電作為逆變電路的供電電源,在逆變側(cè)部分實(shí)現(xiàn)系統(tǒng)的逆變輸出和功率調(diào)節(jié)。
?
?
整個(gè)系統(tǒng)由DSP控制,電壓電流檢測(cè)裝置通過(guò)檢測(cè)直流母線的電壓值和電流值并變送給DSP,以實(shí)現(xiàn)功率反饋。負(fù)載檢測(cè)包括溫度檢測(cè)和頻率跟蹤,通過(guò)將紅外線傳感器檢測(cè)到的溫度值變送給DSP,以實(shí)現(xiàn)溫度反饋;通過(guò)檢測(cè)負(fù)載的諧振電流和電壓信號(hào)反饋給DSP以實(shí)現(xiàn)頻率跟蹤。在DSP內(nèi)部對(duì)電壓、電流等反饋信號(hào)分別A/D變換、保持,通過(guò)數(shù)字乘法運(yùn)算求出實(shí)際輸出功率與數(shù)字給定功率比較,對(duì)偏差進(jìn)行數(shù)字PID控制,可實(shí)現(xiàn)電源輸出功率的閉環(huán)控制和DPLL頻率跟蹤,故障檢測(cè)保護(hù)電路對(duì)缺水、過(guò)熱、過(guò)壓、過(guò)流等故障實(shí)時(shí)監(jiān)控,由DSP故障處理子程序比較判斷后,以中斷方式處理各類(lèi)故障、并報(bào)警顯示。
?
這種傳統(tǒng)感應(yīng)加熱電源由于采用大電容無(wú)源濾波,造成輸入電流畸變,對(duì)電網(wǎng)造成諧波污染,輸入功率因數(shù)降低,而且不利于節(jié)約用電成本。為了提高能源利用率,減少感應(yīng)加熱裝置對(duì)電網(wǎng)的污染,必須采用有源功率因數(shù)校正技術(shù)。
?
由于系統(tǒng)已采用DSP作為主控制器,使用專(zhuān)用PFC芯片反而會(huì)增加系統(tǒng)硬件成本,降低系統(tǒng)的集成度,而且調(diào)試不方便,更不利于系統(tǒng)升級(jí),所以本文研究在原有系統(tǒng)的基礎(chǔ)上,利用DSP實(shí)現(xiàn)功率因數(shù)校正。
?
在原有主電路的整流和逆變部分加入Boost電路,如圖2所示,Boost電路是用來(lái)改善網(wǎng)側(cè)電流波形,提高電源功率因數(shù)的DC/DC變換器;在直流母線側(cè),通過(guò)檢測(cè)Boost電路的輸入電壓" title="輸入電壓">輸入電壓、電感電流和輸出電壓,通過(guò)DSP的軟件控制算法,控制Boost開(kāi)關(guān)管" title="開(kāi)關(guān)管">開(kāi)關(guān)管的通斷來(lái)達(dá)到功率因數(shù)校正的目的。
?
?
3 基于DSP的APFC實(shí)現(xiàn)
?
圖3給出基于DSP-TMS320F2812的APFC控制原理圖。TMS320F2812芯片是TI公司推出的32位定點(diǎn)數(shù)字信號(hào)處理器,具有強(qiáng)大的控制和信號(hào)處理能力,是用于數(shù)字電力電子變換與控制的高性?xún)r(jià)比DSP芯片。
?
APFC控制原理如下:Boost電路的輸出電壓,即直流母線電壓V0經(jīng)傳感器采樣、隔離后送入DSP的ADCIN2口,并轉(zhuǎn)換為數(shù)字信號(hào),與參考數(shù)字電壓Vref比較,其偏差值送入電壓控制器Gv,通過(guò)糾偏控制使V0與Vref相等,Gv采用數(shù)字PI控制,有:
?
?
電壓控制器G的輸出信號(hào)B與Boost變換器的輸入電壓Vin經(jīng)隔離、A/D變換后的數(shù)字信號(hào)A相乘,乘積作為電感電流Iin的參考信號(hào)Iref。電感電流Iin與參考信號(hào)Iref比較后,差值送入電流控制器Gc,Gc也采用數(shù)字Pl控制,有:
?
?
這樣便輸出脈寬調(diào)制波,經(jīng)驅(qū)動(dòng)器隔離、放大后驅(qū)動(dòng)開(kāi)關(guān)管高頻導(dǎo)通/關(guān)斷,以實(shí)現(xiàn)電感電流Iin實(shí)時(shí)跟蹤Iref。
?
實(shí)現(xiàn)式(2)和式(4)時(shí),為了防止Uv(n),Uc(n)過(guò)大造成系統(tǒng)失控,還必須將他們限定在合適的范圍內(nèi)。對(duì)此,可按以下方法實(shí)現(xiàn)離散控制。
?
電流環(huán)同理,當(dāng)開(kāi)關(guān)管工作在很高的頻率時(shí)(比如f=100 kHz),電壓環(huán)調(diào)節(jié)器Gv的輸出基本不變,所以乘法器輸出的Iref基本上是和輸入電壓成比例的波形,就可實(shí)現(xiàn)輸入電流對(duì)輸入電壓的實(shí)時(shí)跟蹤,且保持二者相位相同,使輸入功率因數(shù)接近于1。
?
4 實(shí)驗(yàn)研究
?
根據(jù)以上理論,設(shè)計(jì)一臺(tái)單相輸入220 V、功率4 kW、諧振頻率30 kHz的超音頻感應(yīng)加熱電源樣機(jī),并且對(duì)加入APFC電路前后的網(wǎng)側(cè)電壓、電流進(jìn)行對(duì)比分析,實(shí)驗(yàn)結(jié)果分別如圖4,圖5所示。圖4為傳統(tǒng)感應(yīng)加熱電源網(wǎng)側(cè)的電壓、電流波形,從圖中可以看出,電壓雖是正弦波,但由于直流側(cè)中間儲(chǔ)能大電容的存在,致使電流導(dǎo)通角只有90°,網(wǎng)側(cè)電流波形嚴(yán)重畸變,呈一系列斷續(xù)的尖峰脈沖,在同等功率條件下,電流的峰值成倍提高、諧波分量加大、電源功率因數(shù)降低(cosφ△0.7)。圖5為引入APFC以后的感應(yīng)加熱電源網(wǎng)側(cè)電壓、電流波形,從圖中可以看出,引入APFC技術(shù)后,電流波形與電壓波形是同相位的正弦波,感應(yīng)加熱電源有接近于1的輸入功率因數(shù)和很低的電流總畸變率,減少了對(duì)電網(wǎng)的污染。
?
?
5 結(jié) 語(yǔ)
?
本文將基于DSP的APFC技術(shù)引入到傳統(tǒng)的感應(yīng)加熱電源中,對(duì)輸入電源的功率因數(shù)進(jìn)行有源校正。在傳統(tǒng)感應(yīng)加熱電源的基礎(chǔ)上,加入了Boost電路,利用DSP的超高速數(shù)據(jù)采樣和信號(hào)處理能力,設(shè)計(jì)出包含有源功率因數(shù)校正(APFC)器的超音頻感應(yīng)加熱電源,并對(duì)感應(yīng)加熱電源引入APFC前后進(jìn)行了對(duì)比實(shí)驗(yàn)和分析。實(shí)驗(yàn)結(jié)果表明:APFC技術(shù)的引入使電源的輸入功率因數(shù)接近于單位功率因數(shù),減少了諧波對(duì)交流電網(wǎng)的污染,使感應(yīng)加熱電源的功率顯著提高。