摘 要: 介紹了基于DSP的PWM型開(kāi)關(guān)電源" title="開(kāi)關(guān)電源">開(kāi)關(guān)電源的原理及設(shè)計(jì)方法,以DSP芯片TMS320LF2407產(chǎn)生SPWM為例闡述了開(kāi)關(guān)電源中PWM波形的實(shí)現(xiàn)方法。仿真結(jié)果表明,基于DSP的開(kāi)關(guān)電源具有穩(wěn)定快、失真小、負(fù)載對(duì)系統(tǒng)影響小的特點(diǎn)。
關(guān)鍵詞: 數(shù)字信號(hào)處理 脈寬調(diào)制 正弦脈寬調(diào)制
目前,開(kāi)關(guān)電源以具有小型、輕量和高效的特點(diǎn)而被廣泛應(yīng)用于以電子計(jì)算機(jī)為主導(dǎo)的各種終端設(shè)備和通信設(shè)備中,是當(dāng)今電子信息產(chǎn)業(yè)飛速發(fā)展不可缺少的一種電源方式。與之相應(yīng),在微電子技術(shù)發(fā)展的帶動(dòng)下,DSP芯片的發(fā)展日新月異,功能日益強(qiáng)大,性?xún)r(jià)比不斷上升,開(kāi)發(fā)手段不斷改進(jìn),其處理速度比CPU快10~50倍,因此基于DSP芯片的開(kāi)關(guān)電源可以說(shuō)是天作之合,擁有著廣闊的前景,可用于先進(jìn)的機(jī)載電源中,也是開(kāi)關(guān)電源今后的發(fā)展趨勢(shì)。
1 PWM型開(kāi)關(guān)電源原理
PWM型開(kāi)關(guān)電源的結(jié)構(gòu)框圖如圖1所示。
市電信號(hào)經(jīng)過(guò)輸入濾波和整流濾波后實(shí)現(xiàn)AC/DC轉(zhuǎn)換,將電網(wǎng)交流電直接整流為較平滑的直流電,以供下一級(jí)變換;再經(jīng)過(guò)逆變器后實(shí)現(xiàn)DC/AC轉(zhuǎn)換,將整流后的直流電變?yōu)榻涣麟?,這是PWM型開(kāi)關(guān)電源實(shí)現(xiàn)PWM控制的核心部分,其頻率越高,體積、重量與輸出功率之比越小。最后再通過(guò)輸出整流與濾波,根據(jù)負(fù)載需要,提供穩(wěn)定可靠的直流電源。
2 PWM控制原理
開(kāi)關(guān)電源控制原理圖如圖2所示。圖中,開(kāi)關(guān)K以一定的時(shí)間間隔重復(fù)地接通和斷開(kāi),在開(kāi)關(guān)K接通時(shí),輸入電源E可通過(guò)開(kāi)關(guān)K和濾波電路提供給負(fù)載RL為負(fù)載提供能量;為使負(fù)載能得到連續(xù)的能量,開(kāi)關(guān)穩(wěn)壓電源必須要有一套儲(chǔ)能裝置,在開(kāi)關(guān)接通時(shí)將一部份能量?jī)?chǔ)存起來(lái),在開(kāi)關(guān)斷開(kāi)時(shí),向負(fù)載釋放[4]。圖2中,由電感L、電容C2和二極管D組成的電路就具有這種功能。電感L和C2用以?xún)?chǔ)存能量,在開(kāi)關(guān)斷開(kāi)時(shí),儲(chǔ)存在電感L和C2中的能量通過(guò)二極管D釋放給負(fù)載,使負(fù)載得到連續(xù)而穩(wěn)定的能量。因二極管D使負(fù)載電流連續(xù)不斷,所以稱(chēng)為續(xù)流二極管。AB間的電壓平均值EAB可表示為:
EAB=TON/T×E (1)
式中,TON為開(kāi)關(guān)每次接通的時(shí)間,T為開(kāi)關(guān)通斷的工作周期(即開(kāi)關(guān)接通時(shí)間TON和關(guān)斷時(shí)間TOFF之和)。由式(1)可知,開(kāi)關(guān)接通時(shí)間和工作周期的比例改變,AB間電壓的平均值也隨之改變,因此,隨著負(fù)載及輸入電源電壓的變化自動(dòng)調(diào)整TON和T的比例,便能使輸出電壓V0維持不變。改變接通時(shí)間TON和工作周期比例亦即改變脈沖的占空比" title="占空比">占空比,這種方法稱(chēng)為“時(shí)間比率控制”(Time Ratio Control,縮寫(xiě)為T(mén)RC)[1]。這里按照TRC原理選擇了開(kāi)關(guān)周期T恒定,通過(guò)改變脈沖寬度" title="脈沖寬度">脈沖寬度TON來(lái)改變占空比,這種方式稱(chēng)為脈寬調(diào)制方式(PWM),用來(lái)實(shí)現(xiàn)對(duì)電壓幅值頻率的控制。
3 DSP芯片TMS320LF2407簡(jiǎn)介
TMS320系列DSP的體系結(jié)構(gòu)是專(zhuān)為實(shí)時(shí)信號(hào)處理而設(shè)計(jì)的,該系列DSP集實(shí)時(shí)處理能力和控制外設(shè)功能于一身,為實(shí)現(xiàn)控制系統(tǒng)提供了理想的解決方案。
TMS320LF2407在TMS320系列的基礎(chǔ)上有以下特點(diǎn)[2]:
(a)高性能10位模/數(shù)轉(zhuǎn)換器(ADC)的轉(zhuǎn)換時(shí)間為500ns,提供多達(dá)16路的模擬輸入。
(b)基于TMS320C2xx系列的CPU核保證了其與TMS320系列DSP的代碼兼容。
(c)具有兩個(gè)事件管理器模塊EVA和EVB,每個(gè)均可提供兩個(gè)16位通用定時(shí)器和八個(gè)16位的PWM通道。
(d)高達(dá)24K的FLASH程序存儲(chǔ)器。
(e)可擴(kuò)展外部存儲(chǔ)器。
(f)五個(gè)外部中斷(兩個(gè)驅(qū)動(dòng)保護(hù)、復(fù)位和兩個(gè)可屏蔽中斷)。
4 利用TMS320LF2407實(shí)現(xiàn)SPWM
4.1 SPWM控制的基本原理
所謂SPWM即PWM中脈沖寬度按正弦規(guī)律變化。由采樣理論:沖量相等而形狀不同的窄脈沖加在具有慣性的環(huán)節(jié)上,其效果基本相同可知,為了在輸出端得到正弦波,就需要輸出一系列幅值相等而寬度不等的矩形波" title="矩形波">矩形波。采用三角載波的規(guī)則采樣法,就可以得到寬度按正弦規(guī)律變化的矩形波。如圖3所示,每個(gè)脈沖的中點(diǎn)都以相應(yīng)的三角波的中點(diǎn)對(duì)稱(chēng),在三角載波的負(fù)峰時(shí)刻TD對(duì)正弦波采樣得到D點(diǎn),過(guò)D點(diǎn)作一水平直線和三角波分別交于A點(diǎn)和B點(diǎn),在A點(diǎn)時(shí)刻tA和B點(diǎn)時(shí)刻tB控制功率器件的通斷。可見(jiàn)AB長(zhǎng)度即為脈沖寬度,由圖可得如下關(guān)系式:
AB=TC(1+sinωctD)/2 (2)
根據(jù)這一關(guān)系式可知,如果一個(gè)周期內(nèi)有N個(gè)矩形波,則第I個(gè)矩形波的占空比為:
DI=0.5+0.5sin(I×2π/N) (3)
4.2 利用TMS320LF2407實(shí)現(xiàn)SPWM控制
這里以EVB中的通用定時(shí)器3及與之相關(guān)的比較單元為例來(lái)說(shuō)明實(shí)現(xiàn)SPWM控制的過(guò)程。
TMS320LF2407中EVB的定時(shí)器3有三個(gè)與之相關(guān)的比較單元:比較單元4、5、6,每個(gè)比較單元都有一個(gè)相應(yīng)的比較寄存器:CMPR4、CMPR5和CMPR6。每個(gè)比較單元都可單獨(dú)設(shè)置成比較模式和PWM模式,設(shè)置為PWM模式時(shí),每個(gè)比較單元有兩個(gè)極性相反的PWM輸出。因此利用TMS320LF2407可實(shí)現(xiàn)對(duì)三相橋式逆變電路的SPWM控制。在周期寄存器T3PR的值一定的情況下,通過(guò)改變比較寄存器的值就可以改變輸出矩形脈沖的寬度[3]。
根據(jù)式(3)所得的占空比表達(dá)式,再利用通用定時(shí)器比較單元的PWM特性,就可以很容易地實(shí)現(xiàn)SPWM。首先介紹一下產(chǎn)生PWM的寄存器設(shè)置,其步驟如下:
(1)裝載比較方式控制寄存器" title="控制寄存器">控制寄存器ACTRB。
(2)如果使能死區(qū),則設(shè)置和裝載死區(qū)時(shí)間控制寄存器DBTCONB(如使能則可避免上下橋臂同時(shí)輸出觸發(fā)脈沖)。
(3)設(shè)置和裝載定時(shí)器3周期寄存器,即規(guī)定PWM波形周期。
(4)初始化EVB的比較寄存器CMPR4、CMPR5、CMPR6。
(5)設(shè)置和裝載定時(shí)器3的控制寄存器T3CON。
(6)更新比較寄存器的值,使輸出的PWM波形占空比發(fā)生變化。
具體的程序設(shè)計(jì)方法如下:
(1)系統(tǒng)初始化后根據(jù)載波頻率和信號(hào)頻率計(jì)算出每個(gè)周期需要輸出的矩形波個(gè)數(shù),從而確定定時(shí)器的周期,以設(shè)置頻率參數(shù)及脈沖個(gè)數(shù)。
(2)根據(jù)式(3)計(jì)算出每個(gè)矩形脈沖的占空比,用占空比乘以周期寄存器的值,從而計(jì)算出比較寄存器的值。該過(guò)程作為計(jì)算子程序,并使脈沖指針個(gè)數(shù)I加1。
(3)在周期中斷子程序中將計(jì)算所得出的比較寄存器的值送到比較寄存器,當(dāng)達(dá)到一次載波周期時(shí)置相應(yīng)標(biāo)志位。
(4)主程序根據(jù)標(biāo)志位來(lái)判斷是否已完成一個(gè)周期的操作。如果標(biāo)志位TC上已置1,則清標(biāo)志位,調(diào)計(jì)算占空比子程序,然后進(jìn)入等待狀態(tài);如果標(biāo)志位上未置1,則直接進(jìn)入等待狀態(tài)。其主程序流程圖如圖4所示。
雖然利用單片機(jī)也能實(shí)現(xiàn)SPWM,但運(yùn)用DSP強(qiáng)大的數(shù)據(jù)處理能力及其速度優(yōu)勢(shì)可以提高電源控制系統(tǒng)的精度和實(shí)時(shí)性,滿(mǎn)足逆變電源更高的要求,為電源控制系統(tǒng)的全數(shù)字化提供必要的軟硬件基礎(chǔ)。其與單片機(jī)的性能比較見(jiàn)表1。
5 仿真結(jié)果
在軟件設(shè)計(jì)的基礎(chǔ)上結(jié)合硬件,得到了在electronics workbench環(huán)境下經(jīng)正弦調(diào)制而未整流濾波的仿真結(jié)果,如圖5、6、7所示。
由圖5、圖6比較可以看到,輸出電壓頻率為40Hz,負(fù)載分別在10Ω和10kΩ時(shí)輸出的波形為很好的正弦波,頻率符合要求,可見(jiàn)負(fù)載的變化對(duì)輸出結(jié)果影響不大;由圖5和圖7比較可以看到,當(dāng)負(fù)載為10Ω時(shí),輸出電壓頻率分別在40Hz和400Hz時(shí)的輸出波形變化不大,可見(jiàn)頻率變化對(duì)輸出波形影響也不大。
由仿真結(jié)果可以看到基于DSP芯片的PWM型開(kāi)關(guān)電源系統(tǒng)具有穩(wěn)定快、失真小、負(fù)載對(duì)系統(tǒng)影響小等特點(diǎn),而且頻率可在軟件部分調(diào)整,這為其應(yīng)用于對(duì)精度要求高的尖端電子設(shè)備提供了保障。
參考文獻(xiàn)
1 何希才.新型開(kāi)關(guān)電源的設(shè)計(jì)與應(yīng)用.北京:科學(xué)出版社,2001
2 劉和平,嚴(yán)利平,張學(xué)鋒等.TMS320LF240xDSP結(jié)構(gòu)、原理及應(yīng)用.北京:北京航空航天大學(xué)出版社,2002