《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 嵌入式技術(shù) > 設(shè)計(jì)應(yīng)用 > 民機(jī)駕駛艙人為因素生理體征數(shù)據(jù)采集系統(tǒng)設(shè)計(jì)
民機(jī)駕駛艙人為因素生理體征數(shù)據(jù)采集系統(tǒng)設(shè)計(jì)
來源:電子技術(shù)應(yīng)用2011年第5期
夏寅昕,傅 山
上海交通大學(xué) 航空航天學(xué)院人機(jī)環(huán)境工程所,上海200240
摘要: 提出了基于物聯(lián)網(wǎng)技術(shù)的一種生理體征數(shù)據(jù)便攜式采集系統(tǒng)。該系統(tǒng)通過傳感器網(wǎng)絡(luò)和嵌入式系統(tǒng),將體征數(shù)據(jù)實(shí)時(shí)采集并傳輸?shù)竭h(yuǎn)程進(jìn)行分析處理。系統(tǒng)主要由生理體征采集模塊、ARM接收模塊、遠(yuǎn)程數(shù)據(jù)分析服務(wù)器組成。系統(tǒng)充分體現(xiàn)了模塊化的設(shè)計(jì)理念,配合高效的數(shù)據(jù)協(xié)議,使得系統(tǒng)可靠性高、穩(wěn)定性強(qiáng)、擴(kuò)展性好,對于民機(jī)駕駛艙人為因素研究是一種嶄新的探索。
中圖分類號: TP393
文獻(xiàn)標(biāo)識碼: A
文章編號: 0258-7998(2011)05-0035-04
Design of physical sign data collection system for human factors in civil airplane cockpit
Xia Yinxin,F(xiàn)u Shan
School of Aeronautics and Astronautics, Shanghai Jiaotong University,Shanghai 200240,China
Abstract: The paper provides a design of portable data collection system via the technology of “Internet of things” which can be used during the task of pilots. The system contains three major parts: physical sign data sensor module, ARM system and remote server. The data protocol between the interfaces of different modules is the most important relationship which makes the whole system more reliable and stable. The application of “Internet of things” and “modular design” is a great innovation to the study of aviatic human factors.
Key words : human factors of civil airplane;Internet of things;Zigbee;ARM;data protocol

    統(tǒng)計(jì)資料表明,隨著飛機(jī)設(shè)計(jì)技術(shù)的突飛猛進(jìn),在各類民航客機(jī)事故原因中,機(jī)械電子設(shè)備故障所占的比例越來越低,而機(jī)組人員人為因素所占比例越來越高。因此,針對機(jī)組人員人為因素的研究將是未來人機(jī)工程的主要趨勢,這對于降低民航飛機(jī)事故率、優(yōu)化駕駛艙設(shè)計(jì)、改善航空電子設(shè)備以及提升飛行員工作方式和效率有重要意義。

    人為因素的研究主要以飛行員的任務(wù)對象為核心,由飛行員、駕駛艙布局、環(huán)境、電子設(shè)備以及相互之間的關(guān)系等多種復(fù)雜因素組成。飛行員執(zhí)行任務(wù)時(shí)的狀態(tài)指標(biāo)、尤其是人體生理體征數(shù)據(jù)是反映飛行員人為因素的重要特征。因此,對于這些數(shù)據(jù)的采集是研究飛行員人為因素的第一步。
    飛行員的主要生理體征數(shù)據(jù)有:心電、體溫、心率、呼吸率、血氧、腦電波、肌肉骨骼狀態(tài)等。測量過程中應(yīng)對飛行員任務(wù)操作的影響降低到最低,而腦電波和肌肉骨骼的測量通常需要額外復(fù)雜的設(shè)備和操作,對飛行員影響較大,通常以圖像的方式進(jìn)行輔助識別。另外血氧值數(shù)據(jù)在人體沒有發(fā)生重大生理變化時(shí)一般保持不變。因此,心電、體溫、心率、呼吸率數(shù)據(jù)足以反映一名飛行員的生理體征,且隨著電子技術(shù)和物聯(lián)網(wǎng)技術(shù)的發(fā)展,對這些數(shù)據(jù)的便攜采集在技術(shù)上也是可行的。
1 系統(tǒng)架構(gòu)
    基于物聯(lián)網(wǎng)技術(shù)的數(shù)據(jù)采集和傳輸系統(tǒng)如圖1所示。主要由三部分組成:生理體征數(shù)據(jù)采集模塊、本地接收模塊及遠(yuǎn)程分析處理服務(wù)器。系統(tǒng)采用模塊化設(shè)計(jì),使得提取、采集、傳輸、分析各個(gè)功能在邏輯和應(yīng)用上分開,降低了不必要的冗余性,增強(qiáng)了整個(gè)系統(tǒng)的擴(kuò)展性和可維護(hù)性,使設(shè)計(jì)更加簡單。

    生理體征數(shù)據(jù)采集模塊和本地接收模塊之間采用無線傳感器網(wǎng)絡(luò)。采集模塊將生理體征數(shù)據(jù)通過無線傳感器網(wǎng)絡(luò)發(fā)送到本地接收模塊,通過初步處理之后,本地接收模塊再將簡單處理過的數(shù)據(jù)通過以太網(wǎng)絡(luò)傳遞到遠(yuǎn)程服務(wù)器,做進(jìn)一步復(fù)雜的數(shù)據(jù)分析、顯示和數(shù)據(jù)庫保存。無線傳感器網(wǎng)絡(luò)采用星型無線網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu),采集模塊充當(dāng)終端設(shè)備,由一個(gè)到多個(gè),本地接收模塊作為網(wǎng)絡(luò)調(diào)諧器或者網(wǎng)絡(luò)路由器,是整個(gè)無線傳感器網(wǎng)絡(luò)的中心。
2 硬件設(shè)計(jì)
    出于對數(shù)據(jù)流量帶寬以及性價(jià)比的考慮,無線傳感器網(wǎng)絡(luò)采用低功耗、中低速、技術(shù)比較成熟的Zigbee網(wǎng)絡(luò)搭建,而采集模塊和接收模塊都采用基于ARM的嵌入式系統(tǒng)。前者任務(wù)簡單,使用ARM7,而后者要進(jìn)行多任務(wù)操作,所以使用性能相對較強(qiáng)的ARM9。生理體征傳感器主要使用心電傳感器和體溫傳感器,提供心電波、心率、體溫、呼吸率的數(shù)據(jù)。接收模塊和遠(yuǎn)程服務(wù)器采用基于TCP/IP的以太網(wǎng)進(jìn)行通信。數(shù)據(jù)庫服務(wù)器采用普通PC或者高性能的服務(wù)器。
2.1 采集模塊硬件組成
    生理體征數(shù)據(jù)采集模塊主要由生理體征傳感器、ATMEL ARM7 AT91SAM7X256微處理器、AD、SRAM、采集導(dǎo)聯(lián)及其接口、CC2430模塊、天線和電池組成,見圖2。

    通過接在飛行員身體的導(dǎo)聯(lián)線,可以實(shí)現(xiàn)便攜采集體征數(shù)據(jù)而不影響飛行員工作。其中,CC2430是一款單個(gè)芯片上整合ZigBee射頻(RF)前端、8 KB SRAM、128 KB Flash和8051微控制器的SoC片上系統(tǒng),適用于各種ZigBee節(jié)點(diǎn),包括調(diào)諧器、路由器和終端設(shè)備。CC2430作為一個(gè)外設(shè)連接到采集模塊的ARM7處理器上,通過UART串口輸入體征數(shù)據(jù),再通過數(shù)據(jù)融合、數(shù)據(jù)打包發(fā)送出去。該模塊特點(diǎn)有:體積小、重量輕、便于便攜測量;模塊同時(shí)實(shí)現(xiàn)7通道ECG心電數(shù)據(jù)、1通道心率數(shù)據(jù)、1通道RESP呼吸率、2通道體溫?cái)?shù)據(jù)的監(jiān)測;穩(wěn)定性好、精度高、符合CE要求的功能安全設(shè)計(jì),符合IEC60601族所有心電、體溫監(jiān)測相關(guān)標(biāo)準(zhǔn);支持多節(jié)點(diǎn),中低速率的低功耗網(wǎng)絡(luò)傳輸功能,最高可達(dá)250 kb/s,可以接入多個(gè)采集模塊;單電源5 V工作,低功耗設(shè)計(jì),體征傳感器模塊的功耗為0.6 W,CC2430模塊的功耗為0.125 W左右。

 


2.2 接收模塊硬件組成
    接收模塊由ARM系統(tǒng)板和CC2430模塊組成。ARM系統(tǒng)板以三星公司的ARM920T架構(gòu)S3C2440a芯片為核心,工作頻率400 MHz,最高533 MHz,并且配備64 MB的SDRAM內(nèi)存、256 MB的Nandflash以及2 MB的Norflash。CC2430接收模塊負(fù)責(zé)分時(shí)接收各個(gè)節(jié)點(diǎn)的數(shù)據(jù)并且存入緩存。ARM系統(tǒng)板和CC2430模塊也是通過UART進(jìn)行通信,ARM系統(tǒng)通過UART控制CC2430與體征數(shù)據(jù)采集模塊通過Zigbee無線傳感器網(wǎng)絡(luò)進(jìn)行交互,并對數(shù)據(jù)進(jìn)行一定的預(yù)處理和過濾,并通過以太網(wǎng)傳送給遠(yuǎn)程服務(wù)器。該模塊具有如下特點(diǎn):性價(jià)比高、功耗小、體積小、穩(wěn)定性好,有多種應(yīng)用模式;接口豐富,有UART、百兆以太網(wǎng)口、USB-Host/Device、SPI、I2C、GPIO、LCD接口等,便于系統(tǒng)擴(kuò)展;可以運(yùn)行Linux操作系統(tǒng),進(jìn)行多任務(wù)操作,軟件易擴(kuò)展裁剪;擁有簡單的用戶交互界面和輸入輸出設(shè)備,如鍵盤鼠標(biāo)、LCD等,可以脫離遠(yuǎn)程服務(wù)器進(jìn)行顯示;UART波特率可達(dá)115 200 b/s,滿足接收端CC2430接收多個(gè)節(jié)點(diǎn)數(shù)據(jù)的需要。
2.3 遠(yuǎn)程服務(wù)器搭建
    遠(yuǎn)程服務(wù)器主要指軟件層面的服務(wù)器端程序,可以運(yùn)行在普通PC或硬件服務(wù)器上。遠(yuǎn)程服務(wù)器和ARM通過以太網(wǎng)通信,將ARM已經(jīng)進(jìn)行過預(yù)處理的體征數(shù)據(jù)做進(jìn)一步分析和處理,如統(tǒng)計(jì)分析、與其他數(shù)據(jù)協(xié)同分析、數(shù)據(jù)庫存儲等。其特點(diǎn)如下:具有高性能的計(jì)算、存儲和通信能力,可以運(yùn)行具有圖形界面的操作系統(tǒng);ARM作為遠(yuǎn)程服務(wù)器的接口擴(kuò)展,而遠(yuǎn)程服務(wù)器和ARM通過以太網(wǎng)進(jìn)行高速通信,從而實(shí)現(xiàn)遠(yuǎn)程服務(wù)器的遠(yuǎn)程操控;具有用戶交互功能,如界面和輸入輸出設(shè)備等。
3 軟件設(shè)計(jì)
    系統(tǒng)有三部分共五個(gè)處理器:采集模塊的ARM7處理器、CC2430發(fā)送節(jié)點(diǎn)和接收節(jié)點(diǎn)的8051單片機(jī)、接收模塊的ARM9以及服務(wù)器的CPU。
    采集模塊通過接收傳感器對AD的原始數(shù)據(jù)進(jìn)行計(jì)算和整理,按照一定的數(shù)據(jù)通信協(xié)議通過UART口傳遞到CC2430發(fā)送節(jié)點(diǎn)進(jìn)行緩存,再組包通過Zigbee網(wǎng)絡(luò)以無線網(wǎng)絡(luò)數(shù)據(jù)協(xié)議發(fā)送到接收模塊的接收節(jié)點(diǎn),進(jìn)行二次緩存。接收模塊的ARM也是通過UART和CC2430接收節(jié)點(diǎn)按照相互的通信協(xié)議進(jìn)行通信取得這些數(shù)據(jù),經(jīng)過進(jìn)一步的融合和過濾,最終通過TCP/IP協(xié)議發(fā)送到遠(yuǎn)程服務(wù)器進(jìn)行顯示、存儲、分析等。
    由此可見,貫穿于整個(gè)系統(tǒng)軟件的是各個(gè)模塊接口間的數(shù)據(jù)協(xié)議,通過一種有效和風(fēng)格統(tǒng)一的協(xié)議,能大大提高數(shù)據(jù)通信的效率。
3.1 采集模塊程序
    接收模塊通過電極片和導(dǎo)聯(lián)得到模擬數(shù)據(jù),并經(jīng)過放大電路、AD和傳感器等得到量化并具有一定意義的數(shù)字信號。ARM7將這些數(shù)字信號進(jìn)行計(jì)算預(yù)處理,對數(shù)據(jù)進(jìn)行簡單的組包,以適應(yīng)UART口的傳輸。這些數(shù)據(jù)包括7通道ECG心電數(shù)據(jù)、1通道心率數(shù)據(jù)、1通道RESP呼吸率、2通道體溫?cái)?shù)據(jù)。共有3種數(shù)據(jù)包:心電數(shù)據(jù)、體溫和呼吸率數(shù)據(jù)、導(dǎo)聯(lián)連接和系統(tǒng)狀態(tài)數(shù)據(jù)。平均每個(gè)數(shù)據(jù)包為8 B,數(shù)據(jù)率為16 384 b/s,實(shí)時(shí)不間斷地輸出。這樣的數(shù)據(jù)率可以保證每秒有224組左右心電數(shù)據(jù)、20~30組體溫?cái)?shù)據(jù)和狀態(tài)數(shù)據(jù)。ARM7和CC2430之間UART的波特率設(shè)置為8 400 b/s,已滿足數(shù)據(jù)帶寬,包括數(shù)據(jù)傳輸延時(shí)和處理延時(shí)。
    為保證傳感器數(shù)據(jù)的實(shí)時(shí)性和完整性,ARM7輸出的數(shù)據(jù)一般帶有一定的冗余,所以CC2430接收到數(shù)據(jù)后要進(jìn)行數(shù)據(jù)融合以降低數(shù)據(jù)量。由于人體體溫、心率數(shù)據(jù)短期變化不明顯,所以可以降低實(shí)時(shí)性,因此該類型數(shù)據(jù)一次發(fā)送周期內(nèi)只需傳輸一組即可。而每組7通道心電數(shù)據(jù)中,3個(gè)通道可以通過其他4通道數(shù)值計(jì)算得出,因此只需保留4通道數(shù)值即可。
    采集模塊的CC2430充當(dāng)Zigbee終端設(shè)備,因此初始化時(shí),應(yīng)該根據(jù)接收模塊的Zigbee協(xié)調(diào)器所定期發(fā)出的同步命令進(jìn)行注冊,接入Zigbee星型無線傳感器網(wǎng)絡(luò),然后等待接收端協(xié)調(diào)器發(fā)出的體征數(shù)據(jù)發(fā)送命令。當(dāng)命令傳送時(shí),立刻將緩存中的數(shù)據(jù)通過Zigbee無線傳感器網(wǎng)絡(luò)發(fā)送到接收模塊的CC2430節(jié)點(diǎn)。
    在Zigbee的幀格式中,體征數(shù)據(jù)包含在MAC協(xié)議數(shù)據(jù)單元中,而MAC協(xié)議數(shù)據(jù)單元又由MAC頭、MAC有效負(fù)荷、MAC尾組成,最大長度為127 B,如果使用長地址,MAC頭和MAC尾要占掉25 B,而短地址只需要9 B。在本系統(tǒng)中,考慮到體征數(shù)據(jù)的數(shù)據(jù)量較大,而節(jié)點(diǎn)數(shù)較少,所以應(yīng)該采取短地址以增加通信效率,因此每次傳輸體征數(shù)據(jù)118 B,所以發(fā)送時(shí)需要進(jìn)行分幀。
3.2 接收端CC2430程序
    接收端的CC2430模塊作為Zigbee的協(xié)調(diào)器,即星型網(wǎng)絡(luò)的中心,與生理體征采集模塊的CC2430類似,主要完成UART通信和Zigbee通信兩項(xiàng)任務(wù)。
    接收端CC2430初始化時(shí)建立一個(gè)Zigbee網(wǎng)絡(luò),并且定期搜尋是否有新接入的Zigbee終端設(shè)備,若有則通知其注冊??紤]到數(shù)據(jù)量,終端設(shè)備節(jié)點(diǎn)的上限為4個(gè)。以輪詢的方式向已注冊的節(jié)點(diǎn)終端發(fā)送傳輸命令,得到各個(gè)節(jié)點(diǎn)所連接的生理體征采集模塊的數(shù)據(jù),并寫入緩存,同時(shí)打上時(shí)間戳,完成一次接收周期。
    另外,CC2430以中斷方式接收ARM端UART傳來的命令,并且將緩存數(shù)據(jù)通過UART返回給ARM系統(tǒng)。
3.3 ARM系統(tǒng)板程序
    ARM系統(tǒng)板的軟件架構(gòu)以Linux為主,主要分成內(nèi)核層、中間層以及應(yīng)用層。
    內(nèi)核層包括設(shè)備驅(qū)動、內(nèi)核API以及簡單的文件系統(tǒng);中間層包括一些圖形和網(wǎng)絡(luò)通信的開源庫,如QT和JRTPLib等;應(yīng)用層運(yùn)行核心的數(shù)據(jù)處理程序。
    ARM系統(tǒng)數(shù)據(jù)處理程序通過基于TCP/IP協(xié)議的以太網(wǎng)接收遠(yuǎn)程服務(wù)器的命令,對ARM接收端的CC2430發(fā)出指令,以控制和接收體征數(shù)據(jù)采集模塊通過Zigbee無線傳感網(wǎng)絡(luò)發(fā)送的生理體征數(shù)據(jù),并且對數(shù)據(jù)做進(jìn)一步的融合和篩選,降低數(shù)據(jù)流量,加強(qiáng)針對性,按照數(shù)據(jù)協(xié)議加包加尾,發(fā)送到遠(yuǎn)程服務(wù)器。ARM系統(tǒng)需要定期與CC2430進(jìn)行時(shí)間校對,以確保CC2430在接收數(shù)據(jù)時(shí)打的時(shí)間戳盡可能保持時(shí)間同步。
    另外,ARM系統(tǒng)還可以提供一個(gè)簡單的用戶界面,顯示這些體征數(shù)據(jù)波形和數(shù)值,并且接收用戶的指令,從而使ARM即使和遠(yuǎn)程服務(wù)器沒有相連的情況,也可以脫離服務(wù)器進(jìn)行簡單的交互。
3.4 遠(yuǎn)程服務(wù)器數(shù)據(jù)處理程序
    由于本系統(tǒng)中遠(yuǎn)程服務(wù)器的功能主要是采集,所以數(shù)據(jù)處理在于簡單的統(tǒng)計(jì)分析,設(shè)計(jì)數(shù)據(jù)庫存儲功能,并且為上層應(yīng)用模塊提供處理接口,同時(shí)設(shè)計(jì)用戶界面顯示結(jié)果和接收用戶輸入的指令。
    遠(yuǎn)程服務(wù)器的核心是網(wǎng)絡(luò)編程,通過基于TCP/IP的數(shù)據(jù)通信協(xié)議控制ARM完成最終的體征數(shù)據(jù)采集傳輸,并且將這些數(shù)據(jù)在界面上畫圖顯示波形,同時(shí)將數(shù)據(jù)存入數(shù)據(jù)庫,并提供數(shù)據(jù)處理和分析的底層接口。
4 實(shí)現(xiàn)過程
    系統(tǒng)實(shí)現(xiàn)過程中的難點(diǎn)在于:采集生理體征數(shù)據(jù)的準(zhǔn)確性、Zigbee多節(jié)點(diǎn)下的延時(shí)控制和數(shù)據(jù)完整性、數(shù)據(jù)融合和數(shù)據(jù)協(xié)議、系統(tǒng)裝配等。
4.1 生理體征數(shù)據(jù)的準(zhǔn)確性
    體征數(shù)據(jù)的準(zhǔn)確性主要依賴于傳感器芯片的質(zhì)量,傳感器相關(guān)電路的設(shè)計(jì)以及數(shù)據(jù)計(jì)算的正確性。為了盡可能地保證數(shù)據(jù)采集的準(zhǔn)確性,生理體征采集模塊通過采購大型廠商的OEM模塊實(shí)現(xiàn),該模塊的軟硬件架構(gòu)和前文所提到的設(shè)計(jì)基本保持一致。
    該OEM模塊符合CE要求的功能安全設(shè)計(jì)以及IEC60601族所有心電、體溫監(jiān)測相關(guān)標(biāo)準(zhǔn),可靠性好、數(shù)據(jù)準(zhǔn)確性高。
4.2 Zigbee多節(jié)點(diǎn)下的延時(shí)控制和數(shù)據(jù)完整性
    實(shí)際測試得到生理體征傳感器模塊的數(shù)據(jù)速率為16 384 b/s左右,通過傳感器模塊發(fā)射端CC2430的篩選,可以使每個(gè)Zigbee節(jié)點(diǎn)的實(shí)際輸入數(shù)據(jù)速率為6 400 b/s左右,而Zigbee網(wǎng)絡(luò)的發(fā)送速率最高為250 kb/s,理論上可以滿足多個(gè)生理體征傳感器模塊通過Zigbee節(jié)點(diǎn)接入Zigbee網(wǎng)絡(luò)以分時(shí)復(fù)用的模式與ARM接收端通信。
    實(shí)驗(yàn)表明,除了上述數(shù)據(jù)率限制因素,還要加入Zigbee傳輸延時(shí)、節(jié)點(diǎn)切換延時(shí)。CC2430數(shù)據(jù)篩選處理延時(shí),尤其是切換和處理延時(shí),由于CC2430緩存有限,最高約為1 KB,因此比較合理的節(jié)點(diǎn)個(gè)數(shù)在1~4個(gè)。如果節(jié)點(diǎn)過多,則節(jié)點(diǎn)數(shù)據(jù)處理延時(shí)和節(jié)點(diǎn)切換延時(shí)會使得單個(gè)節(jié)點(diǎn)的數(shù)據(jù)總延時(shí)成倍加大。如果數(shù)據(jù)緩存超過了上限,則會出現(xiàn)數(shù)據(jù)不完整的情況。
    當(dāng)1~4個(gè)節(jié)點(diǎn)接入時(shí),每個(gè)節(jié)點(diǎn)的數(shù)據(jù)總延時(shí)并不大,在100 ms級別,不超過1 s,具有良好的實(shí)時(shí)性,說明限制節(jié)點(diǎn)個(gè)數(shù)的瓶頸為CC2430的緩存上限??梢缘贸鼋Y(jié)論,控制延時(shí)和數(shù)據(jù)完整性主要在于降低數(shù)據(jù)處理延時(shí)和節(jié)點(diǎn)切換的延時(shí),通過合理的算法以及數(shù)據(jù)協(xié)議的設(shè)計(jì),可以提升有限緩存空間的使用效率。
    另外,實(shí)時(shí)性的控制必須加入時(shí)間戳的方法及時(shí)間同步的技術(shù),以確保數(shù)據(jù)產(chǎn)生時(shí)間的相對準(zhǔn)確性,也可對于延時(shí)進(jìn)行量化的計(jì)算。
4.3 數(shù)據(jù)融合和數(shù)據(jù)協(xié)議
    數(shù)據(jù)融合和數(shù)據(jù)協(xié)議是整個(gè)系統(tǒng)上層通信的關(guān)鍵,Zigbee網(wǎng)絡(luò)帶寬和硬件性能是有限的,因此好的上層數(shù)據(jù)協(xié)議,能夠很好地提升數(shù)據(jù)通信效率,同時(shí)方便軟件實(shí)現(xiàn)和風(fēng)格統(tǒng)一。
    本設(shè)計(jì)實(shí)現(xiàn)中,數(shù)據(jù)以組包的形式傳遞,各接口數(shù)據(jù)包協(xié)議統(tǒng)一設(shè)計(jì)為:數(shù)據(jù)包頭+數(shù)據(jù)類型+數(shù)據(jù)長度+數(shù)據(jù)實(shí)際內(nèi)容(載荷)+數(shù)據(jù)校驗(yàn)。這使數(shù)據(jù)協(xié)議的處理能夠統(tǒng)一方法,提升軟件代碼的重用性和效率,加強(qiáng)了數(shù)據(jù)的傳輸效率和準(zhǔn)確性。
    數(shù)據(jù)融合主要按照分級數(shù)據(jù)篩選的方式進(jìn)行,每一級都有一套數(shù)據(jù)篩選和重新進(jìn)行排列組合的規(guī)則和方法,以適應(yīng)不同級之間的傳輸。這能大大降低數(shù)據(jù)傳輸量,提升數(shù)據(jù)的傳輸效率,并且能夠滿足不同的數(shù)據(jù)需求。
4.4 系統(tǒng)裝配
    生理體征采集模塊在采集飛行員體征數(shù)據(jù)的同時(shí),對飛行員執(zhí)行任務(wù)的影響要降低到最小,因此,對模塊的體積有很高的要求。傳感器模塊和CC2430要盡可能地貼近,節(jié)省體積,并且使用電池使整個(gè)模塊變成一個(gè)便攜式設(shè)備。接收模塊也應(yīng)該盡量做到小巧,不影響駕駛艙的設(shè)備擺放和工作。
    本文討論的民機(jī)駕駛艙人為因素生理體征數(shù)據(jù)采集系統(tǒng)的設(shè)計(jì),采用目前比較流行的物聯(lián)網(wǎng)技術(shù)和嵌入式電子技術(shù),利用Zigbee無線傳感器網(wǎng)絡(luò),將飛行員具有代表性的生理體征數(shù)據(jù)(心電圖、心率、體溫、呼吸率)采集到ARM系統(tǒng)上進(jìn)行初步處理和篩選,再通過以太網(wǎng)傳給遠(yuǎn)程服務(wù)器進(jìn)行進(jìn)一步復(fù)雜的分析并儲存。這樣的工作模式對于民機(jī)人為因素理論研究具有重要的實(shí)踐意義。
    系統(tǒng)的最大優(yōu)點(diǎn)是利用物聯(lián)網(wǎng)的成熟技術(shù)實(shí)現(xiàn)了生理體征數(shù)據(jù)采集的模塊化設(shè)計(jì),提高了數(shù)據(jù)采集能力,提升了系統(tǒng)的可靠性、穩(wěn)定性和便攜性,同時(shí)方便系統(tǒng)的功能擴(kuò)展,以便開展更多人為因素相關(guān)數(shù)據(jù)的采集。
    系統(tǒng)的下一步改進(jìn)方向是優(yōu)化各個(gè)接口之間的通信協(xié)議,從而更好地改善數(shù)據(jù)融合和傳輸效率,進(jìn)一步增強(qiáng)擴(kuò)展性并提升各設(shè)備對象的管理能力,從而接入更多類型的數(shù)據(jù)采集設(shè)備。
參考文獻(xiàn)
[1] 李勁松,楊明,劉曉平.基于CC2430和ZigBee2006協(xié)議棧的通信模塊設(shè)計(jì)[J].單片機(jī)與嵌入式系統(tǒng)應(yīng)用,2010.
[2] 孫德輝,龔關(guān)飛,楊揚(yáng).基于CC2430的無線傳感器網(wǎng)絡(luò)系統(tǒng)設(shè)計(jì)[J].現(xiàn)代電子技術(shù),2010(13).
[3] 程道來,楊琳,儀垂杰.飛機(jī)飛行事故原因的人為因素分析[J].中國民航飛行學(xué)院學(xué)報(bào),2006,17(6).
[4] 趙鈞.構(gòu)建基于云計(jì)算的物聯(lián)網(wǎng)運(yùn)營平臺[J].電信科學(xué),2010(6).
[5] 黃布毅,王俊,常亞軍,等.基于ZigBee技術(shù)家庭網(wǎng)關(guān)的設(shè)計(jì)與實(shí)現(xiàn)[J].通信技術(shù),2009(6).

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。